halo168 said:
No, I didn't. I assumed that the masses are colliding on a flat, frictionless surface.
The easiest way to do such problems is to first go into the so-called "center of mass" (CM) frame, which is a new coordinate system that moves at a constant velocity with respect to the original ("lab") frame and in which the initial total momentum = 0. Let ##k = 2.5## (m/sec), so that the initial velocity of ball 1 in the lab frame is ##\vec{v}_{i1} = (2k,0)## and the initial velocity of ball 2 in the lab frame is ##\vec{v}_{i2} = (0,0)##. The velocity of the origin of the CM frame is ##(k,0)##, so the initial velocities of balls 1 and 2 in the CM frame are ##\vec{v}_{i1}' = (k,0)## and ##\vec{v}_{i2}' = (-k,0)##. If ##\theta \in (-\pi,\pi]## is the deflection angle of ball 1 in the CM frame, the final (post-collision) velocities in the CM frame are ##\vec{v}_{f1}' = (k \cos(\theta), k \sin(\theta))## and ##\vec{v}_{f2}' = (- k \cos(\theta), - k \sin(\theta))##
if the collision is elastic. Note that total momentum and kinetic energies are preserved automatically, for any value of ##\theta##.
For a head-on collision we would have ##\theta = \pi##, so ##\vec{v}_{f1}' = (-k,0)##, meaning that ##\vec{v}_{f1} = (-k,0) + (k,0) = (0,0)## in the lab frame; that is, ball 1 would come to rest, and ball 2 would continue forward at speed 2k = 5.0 m/s. This does not match the given problem conditions, so the collision cannot be head-on if it is elastic. However, for general ##\theta## we have ##\vec{v}_{f1} = (k,0) + (k \cos(\theta), k \sin(\theta)) = k (1 + \cos(\theta), \sin(\theta))## in the lab frame. The terminal speed of ball 1 in the lab frame is ##s_{f1} = k \sqrt{(1 + \cos (\theta))^2 + \sin^2 (\theta)} = k \sqrt{2} \sqrt{1 + \cos (\theta)} = 4.35## m/sec. Thus, we have
\sqrt{1 + \cos (\theta)} = \frac{4.35}{2.5 \sqrt{2}} \Rightarrow \cos(\theta) = 0.5138000000 = 0.5138
There are, of course, two values for ##\theta##, corresponding to an upward or downward deflection through the same angle.
Once you know ##\theta## you can evaluate ##\vec{v}_{f2}'## (CM) and from that get ##\vec{v}_{f2}## (lab) and the speed ##s_{f2} = |\vec{v}_{f2}|## in the lab frame. You can also find the angle of deflection of ball 1 in the lab frame. Can you see how?