When Does (A+B)(A-B) = A^2 - B^2?

  • Thread starter Thread starter charlies1902
  • Start date Start date
charlies1902
Messages
162
Reaction score
0
If A and B are n × n matrices, when does
(A + B)(A − B) = A^2 − B^2?

I guess I start out by expanding?

A^2 - BA-B^2+BA=0

Thus AB=BA in order for that to work?
 
Physics news on Phys.org
charlies1902 said:
If A and B are n × n matrices, when does
(A + B)(A − B) = A^2 − B^2?

I guess I start out by expanding?

A^2 - BA-B^2+BA=0

Thus AB=BA in order for that to work?

Correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top