When is a matrix positive semi-definite?

  • Thread starter Thread starter JK423
  • Start date Start date
  • Tags Tags
    Matrix Positive
JK423
Gold Member
Messages
394
Reaction score
7
Hello people,

Im working on a project and this problem came up:

I have a symmetric matrix whose elements are complex variables, and i know that this matrix is positive semi-definite.
I have to derive a criterion for the matrix's elements, so that if it's satisfied by them then the matrix will be positive semi-definite.

Any idea on how to do that?
For example, a positive semi-definite matrix has to satisfy some relation that i can use?
Maybe its eigenvalues must be non-negative?

I'd really need your help, thanks a lot!

John
 
Physics news on Phys.org
HallsofIvy said:
Yes, a matrix is "positive semi-definite" if and only if all of its eigenvalues are non-negative. You might want to look at this: http://en.wikipedia.org/wiki/Positive-definite_matrix

You'll want the matrix to be Hermitian as well (or normal).
 
micromass said:
You'll want the matrix to be Hermitian as well (or normal).

Complex symmetric (not hermitian!) matrices do occur in modelling processes which don't conserve energy, but then the concept of "positive semidefinite" isn't very meaningful. Ths signs of the real parts of the eignenvalues is usually more interesting physically - i.e. does the energy of the system increase or decrease.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
12
Views
2K
Replies
5
Views
2K
Replies
5
Views
2K
Replies
11
Views
2K
Replies
2
Views
5K
Replies
8
Views
2K
Replies
2
Views
3K
Back
Top