I like to think of Pascal's triangle as the sequence of sequences of "triangular" numbers in different dimensions - 0 dimensions is the line which is all "1"s, 1 dimension is the line of counting numbers, 2 dimensions is the regular triangular numbers (1,3,6,10...), the next line is the tetrahedral numbers (1,4,10,20...), after that each line is a higher dimensional sequence of tetrahedral numbers.
It is possible to set up a numerical place value system analogous to the unit - square- cube... sequence of traditional place value systems but instead using unit-triangle-tetrahedron... . Numbers have more than one representation in this system, which might have some use, though I haven't been able to think of one.
More on-topic for this forum, the binomial theorem has a deep relationship to the number of elements of a given grade ("blades" of a given grade) in a Clifford or geometric algebra- a 0-dimensional algebra has 1 grade, the scalar numbers. A 1-dimensional algebra has the scalars and 1 vector blade, representing directed intervals. A 2-D algebra has 1 scalar, 2 orthogonal vectors and 1 area element. 3-D has 1 scalar, 3 vectors, 3 areas (planes of rotation) and 1 volume element. 4-D has 1 scalar, 4 vectors, 6 areas, 4 volumes and 1 4-D volume. Higher dimension algebras get very big, e.g. an 8-D algebra has 256 blades with binomial[8,n] blades of dimension n.