Where did the error occur in calculating the Lie derivative using an example?

jostpuur
Messages
2,112
Reaction score
19
I'm trying to use an example to make sense out of the equation

<br /> \mathcal{L}_X = d\circ i_X + i_X\circ d.<br />

Some simple equations:

<br /> \omega = \omega^1 dx_1 + \omega^2 dx_2<br />

<br /> i_X\omega = X_1\omega^1 + X_2\omega^2<br />

<br /> (d\omega)^{11} = (d\omega)^{22} = 0,\quad (d\omega)^{12} = \frac{1}{2}(\partial_1\omega^2 - \partial_2\omega^1) = - (d\omega)^{21}<br />


<br /> \mu = \mu^{12} dx_1\wedge dx_2 + \mu^{21} dx_2\wedge dx_1<br />

<br /> (i_X\mu)^1 = X_1 \mu^{11} + X_2 \mu^{21} = X_2 \mu^{21},\quad\quad (i_X\mu)^2 = X_1 \mu^{12}<br />


<br /> \eta = \eta^0<br />

<br /> (d\eta)^1 = \partial_1 \eta^0,\quad\quad (d\eta)^2 = \partial_2 \eta^0<br />

Applying them:

<br /> ((d\circ i_X)\omega)^1 = \partial_1 (i_X\omega) = \partial_1(X_1\omega^1 + X_2\omega^2)<br />

<br /> ((d\circ i_X)\omega)^2 = \partial_2 (i_X\omega) = \partial_2(X_1\omega^1 + X_2\omega^2)<br />

<br /> ((i_X\circ d)\omega)^1 = X_2 (d\omega)^{21} = -\frac{X_2}{2}(\partial_1\omega^2 - \partial_2\omega^1)<br />

<br /> ((i_X\circ d)\omega)^2 = X_1 (d\omega)^{12} = \frac{X_1}{2}(\partial_1\omega^2 - \partial_2\omega^1)<br />

<br /> ((d\circ i_X \;+\; i_X\circ d)\omega)^1 = (\partial_1 X_1)\omega^1 \;+\; (\partial_1 X_2)\omega^2 \;+\; X_1\partial_1\omega^1 \;+\; \frac{X_2}{2}\partial_1\omega^2 \;+\; \frac{X_2}{2}\partial_2\omega^1<br />

<br /> ((d\circ i_X \;+\; i_X\circ d)\omega)^2 = (\partial_2 X_1)\omega^1 \;+\; (\partial_2 X_2)\omega^2 \;+\; \frac{X_1}{2}\partial_2 \omega^1 \;+\; X_2\partial_2\omega^2 \;+\; \frac{X_1}{2}\partial_1 \omega^2<br />

There exists a following formula for the Lie derivative:

<br /> (\mathcal{L}_X\omega)^{i_1,\ldots ,i_k} = X\cdot \omega^{i_1,\ldots ,i_k} \;+\; \sum_{\alpha = 1}^k (\partial_{i_{\alpha}} X_j) \omega^{i_1,\ldots ,i_{\alpha - 1},j, i_{\alpha + 1}, \ldots , i_k}<br />

In this example it becomes

<br /> (\mathcal{L}_X\omega)^1 = X_1\partial_1 \omega^1 \;+\; X_2\partial_2\omega^1 \;+\; (\partial_1 X_1) \omega^1 \;+\; (\partial_1 X_2) \omega^2<br />

<br /> (\mathcal{L}_X\omega)^2 = X_1\partial_1 \omega^2 \;+\; X_2\partial_2 \omega^2 \;+\; (\partial_2 X_1)\omega^1 \;+\; (\partial_2 X_2) \omega^2<br />

But this starts to look like

<br /> \mathcal{L}_X \omega \neq (d\circ i_X + i_X\circ d)\omega<br />

Where is this going wrong?
 
Physics news on Phys.org
For your particular example of \omega being a one-form and X the vector field, I get

<br /> <br /> [di_{X}+i_{X}d ]\omega = d[\omega(X)] + d\omega (X) \\<br /> = d(\omega_{\mu}X^{\mu}) + 2[\partial_{[\mu}\omega_{\nu]}dx^{\mu}\wedge dx^{\nu}] (X)<br /> <br />

This becomes

<br /> [\omega_{\mu}\partial_{\nu}X^{\mu} + X^{\mu}\partial_{\nu}\omega_{\mu}]dx^{\nu} + X^{\mu}[\partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu}]dx^{\nu}<br />

We see that two terms cancel and we obtain

<br /> <br /> [\omega_{\mu}\partial_{\nu}X^{\mu} + X^{\mu}\partial_{\mu}\omega_{\nu}]dx^{\nu}<br /> <br />

This looks like the Lie-derivative:

<br /> <br /> \mathcal{L}_{X}\omega = [X^{\nu}\partial_{\nu}\omega_{\mu} + \partial_{\mu}X^{\nu}\omega_{\nu}]dx^{\mu}<br /> <br />

If this doesn't clarify your problem I can look at all those explicit index-stuff you wrote down, but hopefully this helps :P
 
jostpuur said:
<br /> (i_X\mu)^1 = X_1 \mu^{11} + X_2 \mu^{21} = X_2 \mu^{21},\quad\quad (i_X\mu)^2 = X_1 \mu^{12}<br />

The mistake was here. That was the same thing as

<br /> i_X\mu = i_X\big(\mu^{ij} dx_i\wedge dx_j\big) = X_i \mu^{ij} dx_j<br />

when it should have been

<br /> i_X\mu = \frac{1}{2}i_X\big((\mu^{ij} - \mu^{ji})dx_i\otimes dx_j\big) = \frac{1}{2} X_i(\mu^{ij} - \mu^{ji})dx_j<br />

I found that when following your calculation, and looking where it started going differently.
 
Back
Top