Where does the factor (2π)³ come from in QM Fourier transform convention?

  • Thread starter Thread starter Bapelsin
  • Start date Start date
  • Tags Tags
    Qm
Bapelsin
Messages
12
Reaction score
0

Homework Statement



I'm trying to follow the solution to a homework problem in QM, and I don't fully understand this step. Where does the factor (2\pi)^3 come from?

\int d^3re^{-i\vec{p}\cdot\vec{r}}\int{\frac{d^3p'}{(2\pi)^32E_{p'}}\left(a(\vec{p}')e^{-i(E_{p'}t-\vec{p}'\cdot\vec{r})}+a^{\dagger}(\vec{p}')e^{+i(E_{p'}t-\vec{p}'\cdot\vec{r})}\right) =
=\int{\frac{d^3p'}{(2\pi)^32E_{p'}}\left(a(\vec{p}')e^{-iE_{p'}t}(2\pi)^3\delta(\vec{p}-\vec{p}')+a^{\dagger}(\vec{p}')e^{+iE_{p'}t}(2\pi)^3\delta(\vec{p}+\vec{p}')\right)

Homework Equations



See above.

Any help appreciated. Thanks!
 
Physics news on Phys.org
When you do a Fourier transform, which is what the position to momentum space transform is, you have to put a 2\pi somewhere because this is the period of the complex exponential. There are a variety of conventions for where to put the 2\pi . Read this: (http://en.wikipedia.org/wiki/Fourier_transform), especially the part about "Other conventions". The convention in QM is not to put it in the exponential, which means it has to go outside as a normalizing factor. Hope this helps.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top