Where n is an odd positive integer

  • Thread starter Thread starter squenshl
  • Start date Start date
  • Tags Tags
    Integer Positive
squenshl
Messages
468
Reaction score
4
I'm studying for a test.
In doing one of the old tests and it had a question that I couldn't do.
Let T: Rn \rightarrow Rn be an operator on Rn,
where n is an odd positive integer. How do I prove T has at least one eigenvector in Rn
 
Physics news on Phys.org


Well, you can't unless it is specified that T is a linear operator- otherwise "eigenvectors" cannot be defined.

I presume that you know that the "characteristic equation" for an operator on an n dimensional space is an nth order polynomial equation. Since the underlying field is the real numbers, all coefficients of that characteristic equation are real numbers. Now, you know, do you not, that, in that situation, complex roots come in complex conjugate pairs?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top