Which Integral Calculation is Correct?

Click For Summary
SUMMARY

The correct integral calculation for the expression ∫ (3x+2) (2x+1)^{1/2} dx is ∫ (3x+2) (2x+1)^{1/2} dx = (1/3)(3x+2)(2x+1)^{3/2} - (1/5)(2x+1)^{5/2} + C. The alternative solution presented, which uses integration by parts with u = 2x + 1, leads to an incorrect result. The discussion emphasizes the importance of verifying integration results by differentiation to ensure accuracy.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with integration techniques, specifically u-substitution and integration by parts
  • Knowledge of differentiating functions to verify integration results
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study u-substitution techniques in integral calculus
  • Learn about integration by parts and its applications
  • Practice verifying integration results through differentiation
  • Explore common integral forms and their derivations
USEFUL FOR

Students studying calculus, mathematics educators, and anyone seeking to improve their skills in solving integrals and verifying their solutions.

basty
Messages
94
Reaction score
0

Homework Statement



Which one is correct?

##\int (3x+2) (2x+1)^{\frac{1}{2}} dx = \frac{1}{3} (3x+2)(2x+1)^{\frac{3}{2}} - \frac{1}{15} (2x+1)^{\frac{5}{2}} + C##

or

##\int (3x+2) (2x+1)^{\frac{1}{2}} dx = \frac{1}{3} (3x+2)(2x+1)^{\frac{3}{2}} - \frac{1}{5} (2x+1)^{\frac{5}{2}} + C##

?

Homework Equations

The Attempt at a Solution



##\int (3x+2) (2x+1)^{\frac{1}{2}} dx##

Let

##u = 3x+2##

Then

##\frac{du}{dx} = 3##

or

##du = 3 \ dx##

Let

##dv = (2x+1)^{\frac{1}{2}} dx##

Then

##v = \frac{1}{3} (2x+1)^{\frac{3}{2}}##

So

##\int (3x+2) (2x+1)^{\frac{1}{2}} dx##

##= uv - \int v \ du##

##= (3x+2) \frac{1}{3} (2x+1)^{\frac{3}{2}} - \int \frac{1}{3} (2x+1)^{\frac{3}{2}} (3 \ dx)##

##= \frac{1}{3} (3x+2) (2x+1)^{\frac{3}{2}} - \int (2x+1)^{\frac{3}{2}} dx##

##= \frac{1}{3} (3x+2) (2x+1)^{\frac{3}{2}} - \frac{1}{5} (2x+1)^{\frac{5}{2}} + C##
 
Last edited:
Physics news on Phys.org
You'll have an easier time with this is you don't integrate by parts. Do a u-substitution instead with u=2x+1. Much easier.

But I worked through your steps I and I got what you got.
 
Last edited:
Tom Mattson said:
You'll have an easier time with this is you don't integrate by parts.

What integration method I should use?

Tom Mattson said:
Do a u-substitution instead with u=2x+1. Much easier.

Do you mean changing the ##u = 2x + 1## instead of ##u = 3x + 2##?

If so, let me re-work this integration, by part.

##\int (3x + 2)(2x + 1)^{\frac{1}{2}}dx##

Let

##u = 2x + 1##

Then

##\frac{du}{dx} = 2##

Or

##du = 2 \ dx##

####

Let

##dv = (3x + 2) \ dx##

Then

##v = \frac{3}{2}x^2 + 2x##

So

##\int (3x + 2)(2x + 1)^{\frac{1}{2}}dx##

##= uv - \int v \ du##

##= (2x + 1) (\frac{3}{2}x^2 + 2x) - \int (\frac{3}{2}x^2 + 2x)(2 \ dx)##

##= (2x + 1) (\frac{3}{2}x^2 + 2x) - \int (3x^2 + 4x) dx##

##= (2x + 1) (\frac{3}{2}x^2 + 2x) - x^3 - 2x^2 + C##

##= x^3 + 4x^2 + \frac{3}{2}x^2 + 2x - x^3 - 2x^2 + C##

##= \frac{7}{2}x^2 + 2x + C##

Is it correct?

Because this is an integration by part, why use ##u = 2x + 1## instead of ##u = (2x + 1)^{\frac{1}{2}}##?

Will the result be the same or different?
 
Last edited:
basty said:
So

##\int (3x + 2)(2x + 1)^{\frac{1}{2}}dx##

##= uv - \int v \ du##

##= (2x + 1) (\frac{3}{2}x^2 + 2x) - \int (\frac{3}{2}x^2 + 2x)(2 \ dx)##

##= (2x + 1) (\frac{3}{2}x^2 + 2x) - \int (3x^2 + 4x) dx##

##= (2x + 1) (\frac{3}{2}x^2 + 2x) - x^3 - 2x^2 + C##

##= x^3 + 4x^2 + \frac{3}{2}x^2 + 2x - x^3 - 2x^2 + C##

##= \frac{7}{2}x^2 + 2x + C##

Is it correct?
No, it's not even close. This is something that you can check for yourself. If you differentiate (7/2)x2 + 2x + C, do you get (3x + 2)(2x + 1)1/2?

When you're doing integration by parts, whatever you choose for u and dv has to multiply to give you the integrand you start with.
basty said:
Because this is an integration by part, why use ##u = 2x + 1## instead of ##u = (2x + 1)^{\frac{1}{2}}##?
You don't. I think that what Tom Mattson had in mind was an ordinary substitution.
basty said:
Will the result be the same or different?
The answer to this should be obvious.
 
I was just thinking u-substitution. u=2x+1, so x=(u-1)/2 and dx=du/2. Seems like less of a hassle to me because you need 2 u-substitutions in your integration by parts anyway.
 
∫(3x+2)(2x+1)^0.5dx
let f'(x) = (2x + 1)^0.5 ==> f(x) = ((2x + 1)^1.5)/ 3
g(x) = 2x + 2 ==> g'(x) = 2
= (2x + 2)((2x + 1)^1.5) / 3 - 2/3∫(2x + 1)^1.5 dx
= (2x + 2)((2x + 1)^1.5) / 3 - 1/3(2x + 1)^2.5 + c
= 1/3((2x + 2)(2x+1)^1.5 - (2x + 1)^ 2.5) + c
 
ARaslan said:
∫(3x+2)(2x+1)^0.5dx
let f'(x) = (2x + 1)^0.5 ==> f(x) = ((2x + 1)^1.5)/ 3
g(x) = 2x + 2 ==> g'(x) = 2
= (2x + 2)((2x + 1)^1.5) / 3 - 2/3∫(2x + 1)^1.5 dx
= (2x + 2)((2x + 1)^1.5) / 3 - 1/3(2x + 1)^2.5 + c
= 1/3((2x + 2)(2x+1)^1.5 - (2x + 1)^ 2.5) + c

g(x) is not (2x + 2) but (3x + 2).
 
basty said:

Homework Statement



Which one is correct?

##\int (3x+2) (2x+1)^{\frac{1}{2}} dx = \frac{1}{3} (3x+2)(2x+1)^{\frac{3}{2}} - \frac{1}{15} (2x+1)^{\frac{5}{2}} + C##

or

##\int (3x+2) (2x+1)^{\frac{1}{2}} dx = \frac{1}{3} (3x+2)(2x+1)^{\frac{3}{2}} - \frac{1}{5} (2x+1)^{\frac{5}{2}} + C##

?

Homework Equations

The Attempt at a Solution



##\int (3x+2) (2x+1)^{\frac{1}{2}} dx##

Let

##u = 3x+2##

Then

##\frac{du}{dx} = 3##

or

##du = 3 \ dx##

Let

##dv = (2x+1)^{\frac{1}{2}} dx##

Then

##v = \frac{1}{3} (2x+1)^{\frac{3}{2}}##

So

##\int (3x+2) (2x+1)^{\frac{1}{2}} dx##

##= uv - \int v \ du##

##= (3x+2) \frac{1}{3} (2x+1)^{\frac{3}{2}} - \int \frac{1}{3} (2x+1)^{\frac{3}{2}} (3 \ dx)##

##= \frac{1}{3} (3x+2) (2x+1)^{\frac{3}{2}} - \int (2x+1)^{\frac{3}{2}} dx##

##= \frac{1}{3} (3x+2) (2x+1)^{\frac{3}{2}} - \frac{1}{5} (2x+1)^{\frac{5}{2}} + C##

You can easily check for yourself which (if any) of the two answers is correct. Just differentiate both of them and see which (if any) gives you back the original integrand ##(3x+2)(2x+1)^{1/2}##. You should develop the habit of always doing this automatically whenever you do indefinite integrations.
 
Ray Vickson said:
You should develop the habit of always doing this automatically whenever you do indefinite integrations.
I strongly agree.
 

Similar threads

  • · Replies 105 ·
4
Replies
105
Views
7K
Replies
19
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K