MHB Which is the geometric interpretation?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and $$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$
 
Physics news on Phys.org
mathmari said:
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and $$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$

Hey mathmari!

Can we think of some geometric properties that we can verify? (Wondering)

For instance, if a map is a projection, we expect that we have fixpoint vectors in a plane and a non-zero kernel, don't we?
For a rotation we would expect a fixpoint vector along the axis, and that the lengths and angles of vectors are preserved.
For a reflection we would expect fixpoint vectors in a plane, and a normal vector that is mapped to its opposite.

Do those maps have fixpoint vectors?
What is their kernel?
Is there a vector that is mapped to its opposite? (Wondering)

We might also characterize the matrices by the eigenvalues and eigenvectors.
For instance a projection in 3D will have eigenvalues 1, 1, and 0.
And a reflection will have eigenvalues 1,1, and -1.
Can we find those? (Wondering)
 
For the kernel we have: \begin{equation*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix} \ \overset{Z_1\leftrightarrow Z_2}{\longrightarrow } \ \begin{pmatrix}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{pmatrix}\end{equation*}

So the kernel contains only the zero vector. Therefore we don't have a projection. For the set of fixed points we have: \begin{align*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix} &\longrightarrow \begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}-\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix} \\ & \longrightarrow \begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}-\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix} \\ & \longrightarrow \left (\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}-\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\right )\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix}
\\ & \longrightarrow \begin{pmatrix}-1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix}\end{align*}
The echelon form of the matric ist:
\begin{equation*}\begin{pmatrix}-1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix} \ \longrightarrow \begin{pmatrix}-1 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0\end{pmatrix}\end{equation*}
We get the equations
\begin{align*}-v_1-v_2=&0 \\ -2v_2=&0\end{align*}
The set of fixed vectors is therefore \begin{equation*}\text{Fix}=\left \{v_3\begin{pmatrix}0 \\ 0 \\ 1\end{pmatrix}\mid v_3\in \mathbb{R}\right \}\end{equation*}
Is this a fixpoint vector along the axis, and that the lengths and angles of vectors are preserved and so we have a rotation? (Wondering)
 
mathmari said:
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and
(1, 0, 0) is mapped to (0, 1, 0), (0, 1, 0) is mapped to (-1, 0, 0), and (0, 0, -1). Geometrically, a three dimensional figure is rotated 90 degrees in the xy-plane and the z-direction is reversed.

$$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$
$cos(-60)= \frac{1}{2}$ and $sin(-60)= -\frac{\sqrt{3}}{2}$ so this is a rotation by -60 degrees (60 degrees counter-clockwise) in the yz-plane.
 
mathmari said:
For the kernel we have: \begin{equation*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix} \ \overset{Z_1\leftrightarrow Z_2}{\longrightarrow } \ \begin{pmatrix}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{pmatrix}\end{equation*}

Shouldn't the matrix be:
\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & {\color{red}-\enclose{circle}{1}}\end{pmatrix}
(Worried)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top