Which is the geometric interpretation?

Click For Summary
SUMMARY

The discussion focuses on the geometric interpretation of two linear transformations represented by matrices. The first matrix, $$\begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}$$, represents a 90-degree rotation in the xy-plane with a reversal of the z-direction. The second matrix, $$\begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}$$, corresponds to a rotation of -60 degrees in the yz-plane. The discussion also examines the fixed points and kernels of these transformations, concluding that the first matrix does not have a projection due to its kernel containing only the zero vector.

PREREQUISITES
  • Understanding of linear transformations and their matrix representations
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of geometric interpretations of rotations, reflections, and projections
  • Basic proficiency in matrix operations and echelon forms
NEXT STEPS
  • Study the geometric properties of linear transformations in 3D space
  • Learn about eigenvalue decomposition and its applications in geometry
  • Explore the concepts of fixed points and kernels in linear algebra
  • Investigate the relationship between matrix transformations and geometric figures
USEFUL FOR

Mathematicians, physics students, and anyone interested in the geometric interpretations of linear transformations and their applications in 3D modeling and graphics.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and $$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$
 
Physics news on Phys.org
mathmari said:
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and $$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$

Hey mathmari!

Can we think of some geometric properties that we can verify? (Wondering)

For instance, if a map is a projection, we expect that we have fixpoint vectors in a plane and a non-zero kernel, don't we?
For a rotation we would expect a fixpoint vector along the axis, and that the lengths and angles of vectors are preserved.
For a reflection we would expect fixpoint vectors in a plane, and a normal vector that is mapped to its opposite.

Do those maps have fixpoint vectors?
What is their kernel?
Is there a vector that is mapped to its opposite? (Wondering)

We might also characterize the matrices by the eigenvalues and eigenvectors.
For instance a projection in 3D will have eigenvalues 1, 1, and 0.
And a reflection will have eigenvalues 1,1, and -1.
Can we find those? (Wondering)
 
For the kernel we have: \begin{equation*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix} \ \overset{Z_1\leftrightarrow Z_2}{\longrightarrow } \ \begin{pmatrix}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{pmatrix}\end{equation*}

So the kernel contains only the zero vector. Therefore we don't have a projection. For the set of fixed points we have: \begin{align*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix} &\longrightarrow \begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}-\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix} \\ & \longrightarrow \begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}-\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix} \\ & \longrightarrow \left (\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}-\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\right )\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix}
\\ & \longrightarrow \begin{pmatrix}-1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix}\end{align*}
The echelon form of the matric ist:
\begin{equation*}\begin{pmatrix}-1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix} \ \longrightarrow \begin{pmatrix}-1 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0\end{pmatrix}\end{equation*}
We get the equations
\begin{align*}-v_1-v_2=&0 \\ -2v_2=&0\end{align*}
The set of fixed vectors is therefore \begin{equation*}\text{Fix}=\left \{v_3\begin{pmatrix}0 \\ 0 \\ 1\end{pmatrix}\mid v_3\in \mathbb{R}\right \}\end{equation*}
Is this a fixpoint vector along the axis, and that the lengths and angles of vectors are preserved and so we have a rotation? (Wondering)
 
mathmari said:
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and
(1, 0, 0) is mapped to (0, 1, 0), (0, 1, 0) is mapped to (-1, 0, 0), and (0, 0, -1). Geometrically, a three dimensional figure is rotated 90 degrees in the xy-plane and the z-direction is reversed.

$$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$
$cos(-60)= \frac{1}{2}$ and $sin(-60)= -\frac{\sqrt{3}}{2}$ so this is a rotation by -60 degrees (60 degrees counter-clockwise) in the yz-plane.
 
mathmari said:
For the kernel we have: \begin{equation*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix} \ \overset{Z_1\leftrightarrow Z_2}{\longrightarrow } \ \begin{pmatrix}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{pmatrix}\end{equation*}

Shouldn't the matrix be:
\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & {\color{red}-\enclose{circle}{1}}\end{pmatrix}
(Worried)
 

Similar threads

Replies
31
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K