MHB Which is the geometric interpretation?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and $$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$
 
Physics news on Phys.org
mathmari said:
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and $$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$

Hey mathmari!

Can we think of some geometric properties that we can verify? (Wondering)

For instance, if a map is a projection, we expect that we have fixpoint vectors in a plane and a non-zero kernel, don't we?
For a rotation we would expect a fixpoint vector along the axis, and that the lengths and angles of vectors are preserved.
For a reflection we would expect fixpoint vectors in a plane, and a normal vector that is mapped to its opposite.

Do those maps have fixpoint vectors?
What is their kernel?
Is there a vector that is mapped to its opposite? (Wondering)

We might also characterize the matrices by the eigenvalues and eigenvectors.
For instance a projection in 3D will have eigenvalues 1, 1, and 0.
And a reflection will have eigenvalues 1,1, and -1.
Can we find those? (Wondering)
 
For the kernel we have: \begin{equation*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix} \ \overset{Z_1\leftrightarrow Z_2}{\longrightarrow } \ \begin{pmatrix}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{pmatrix}\end{equation*}

So the kernel contains only the zero vector. Therefore we don't have a projection. For the set of fixed points we have: \begin{align*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix} &\longrightarrow \begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}-\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix} \\ & \longrightarrow \begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}-\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix} \\ & \longrightarrow \left (\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}-\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\right )\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix}
\\ & \longrightarrow \begin{pmatrix}-1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}v_1 \\ v_2\\ v_3\end{pmatrix}=\begin{pmatrix}0 \\ 0\\ 0\end{pmatrix}\end{align*}
The echelon form of the matric ist:
\begin{equation*}\begin{pmatrix}-1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix} \ \longrightarrow \begin{pmatrix}-1 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0\end{pmatrix}\end{equation*}
We get the equations
\begin{align*}-v_1-v_2=&0 \\ -2v_2=&0\end{align*}
The set of fixed vectors is therefore \begin{equation*}\text{Fix}=\left \{v_3\begin{pmatrix}0 \\ 0 \\ 1\end{pmatrix}\mid v_3\in \mathbb{R}\right \}\end{equation*}
Is this a fixpoint vector along the axis, and that the lengths and angles of vectors are preserved and so we have a rotation? (Wondering)
 
mathmari said:
Hey! :o

Which is the geometric interpretation of the following maps?

$$v\mapsto \begin{pmatrix} 0&-1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}v$$ and
(1, 0, 0) is mapped to (0, 1, 0), (0, 1, 0) is mapped to (-1, 0, 0), and (0, 0, -1). Geometrically, a three dimensional figure is rotated 90 degrees in the xy-plane and the z-direction is reversed.

$$v\mapsto \begin{pmatrix} 1& 0&0\\0&\frac{1}{2} &-\frac{\sqrt{3}}{2}\\ 0&\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}v$$
$cos(-60)= \frac{1}{2}$ and $sin(-60)= -\frac{\sqrt{3}}{2}$ so this is a rotation by -60 degrees (60 degrees counter-clockwise) in the yz-plane.
 
mathmari said:
For the kernel we have: \begin{equation*}\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix} \ \overset{Z_1\leftrightarrow Z_2}{\longrightarrow } \ \begin{pmatrix}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{pmatrix}\end{equation*}

Shouldn't the matrix be:
\begin{pmatrix}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & {\color{red}-\enclose{circle}{1}}\end{pmatrix}
(Worried)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
31
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
15
Views
2K