Who’s spin in the Einstein-Cartan theory? Source’s or test particle's?

mings6
Messages
11
Reaction score
0
Who’s “spin” is in the Einstein-Cartan theory? Source’s spin or the test particle’s spin?

I quantum mechanics, when we say spin orbit interaction, such as in hydrogen atom, it’s about the test particle's, the electron’s spin and the electron’s orbit interact to each other.

In the Einstein’s general relativity, with weak field condition, it can be described with Gravitoelectromagnetism, in which the source’s spin interacts with the test particles, that leads to the frame dragging and the Lense-Thirring effect.

Its said that “general relativity has one flaw that it cannot model spin-orbit coupling, so we need the Einstein-Cartan theory”. But who’s “spin” is here in the Einstein-Cartan theory? Source’s spin or the test particle’s spin?

From the relation,

(divergence of spin current) = P_{ab} – P_{ba} <> 0

it seems the spin is the source’s spin. Than what the difference between the Einstein-Cartan theory and Gravitoelectromagnetism? What happens if the test particle has spin?
 
Physics news on Phys.org
I haven't seen any Einstein-Cartan equations for motion of spinning test particles; this would be something a "geodesic equation plus spin of the test particle".

In Einstein-Cartan theory the l.h.s. of the equations is always "geometry", the r.h.s. is "matter", just like ordinary GR. Therefore the spin current is always the source term for torsion.

In general the equation for matter would of course not be the equation for a test particle i.e. a "geodesic equation plus spin of the test particle", but a field equation for the matter field coupled to spacetime = curvature + torsion, for example the Dirac equation.
 
Thanks for reply. I still do not understand, if general relativity can not model spin-orbit coupling, then how can we have the Kerr metric that describes the geometry of spacetime around a rotating massive body? And also Gravitoelectromagnetism can do some jobs for frame dragging and the Lense-Thirring effect?
 
GR in standard metric formulation can describe orbital angular momentum, but not intrinsic spin. In order to do that you need at least the tetrad formalism. Doing that one observes that it seems to unnatural to restrict the geometry to vanishing torsion. Allowing torsion automatically means introducing spin currents.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top