Why am I getting different results when using the law of total expectation?

  • Thread starter Thread starter adnaps1
  • Start date Start date
  • Tags Tags
    Expectation Law
adnaps1
Messages
4
Reaction score
0
Suppose a box initially contains 1 red marble and 1 black marble and that, at each time n = 1, 2, ..., we randomly select a marble from the box and replace it with one additional marble of the same color. Let X_n denote the number of red marbles in the box at time n (note that X_0 = 1). What is E(X_3)?

In solving this problem, I would like to calculate E(X_3 | X_2 = 1). If there is 1 red marble at time 2 (X_2 = 1), that means the first 2 selections resulted in black marbles. So at the time of the third selection, there are 3 black marbles in the box and 1 red marble. Therefore, E(X_3 | X_2 = 1) = 1(3/4) + 2(1/4) = 5/4 (that is, 1 with probability 3/4 and 2 with probability 1/4).

However, if I would like to calculate E(X_3 | X_2 = 1) differently, using the law of total expectation, I can write E(X_3 | X_2 = 1) = E(X_3 | X_2 = 1, X_1 = 1) P(X_1 = 1). (There are no other values of X_1 to condition on, because if we know there is 1 red marble at time n = 2, there cannot be 2 red marbles at time n = 1.) However, this simplifies to [1(3/4) + 2(1/4)](1/2) = 5/8.

Why am I getting different results? I think the problem has something to do with the following: When I condition on X_1 = 1, I already know X_1 = 1 with probability 1 because X_2 = 1; however, then I say P(X_1 = 1) = 1/2, which is also true.
 
Physics news on Phys.org
adnaps1 said:
However, if I would like to calculate E(X_3 | X_2 = 1) differently, using the law of total expectation, I can write E(X_3 | X_2 = 1) = E(X_3 | X_2 = 1, X_1 = 1) P(X_1 = 1).

Shouldn't that be E(X_3 | X_2 = 1) = E(X_3 | X_2 =1, X_1=1) P(X_1=1 | X_2 = 1) ?
 
Yes, you're right. Thank you very much.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top