matematikuvol
- 190
- 0
Assume that we can expand the Helmholtz potential about T=T_c, M=0 in a standard Taylor series form of functions of the variables,
A(T,M)=\sum^{\infty}_{j=0}L_j(T)M^j=L_0(T)+L_2(T)M^2+L_4(T)M^4+...
Why A(T,M) must be even function of M?
Coefficients can be expanded about T=T_c
L_j(T)=\sum^{\infty}_{k=0}l_{jk}(T-T_c)^k=l_{j0}+l_{j1}(T-T_c)+...
How I could no that coefficients are analytic functions od T.
A(T,M)=\sum^{\infty}_{j=0}L_j(T)M^j=L_0(T)+L_2(T)M^2+L_4(T)M^4+...
Why A(T,M) must be even function of M?
Coefficients can be expanded about T=T_c
L_j(T)=\sum^{\infty}_{k=0}l_{jk}(T-T_c)^k=l_{j0}+l_{j1}(T-T_c)+...
How I could no that coefficients are analytic functions od T.