Why Define Inner Products for Complex Vector Spaces Using Complex Conjugation?

qbslug
Messages
23
Reaction score
0
What is the motivation behind defining the inner product for a vector space over a complex field as
<v,u> = v1*u1 + v2*u2 + v3*u3
where * means complex conjugate
as opposed to just
<v,u> = v1u1 + v2u2 + v3u3
They both give you back a scalar. The only reason I can see is the special case for <v,v> in which you get a real number but what does that matter.
 
Physics news on Phys.org
qbslug said:
What is the motivation behind defining the inner product for a vector space over a complex field as
<v,u> = v1*u1 + v2*u2 + v3*u3
where * means complex conjugate
Because it's useful. :smile:

One thing to note is that if you "forget" the complex structure and view such a vector space as a vector space of the reals, the complex inner product gives you the same value as the real dot product
 
qbslug said:
The only reason I can see is the special case for <v,v> in which you get a real number but what does that matter.

It matters a lot in terms of "usefulness". For example, real numbers can be ordered with the relations "greater than" and "less than", but complex numbers can not. <v,v> represents the "length" of v, so if <v,v> was a complex quantity, general results like the triangle inequality would not apply to it.
 
Ok thanks. This is the only axiom of inner products that bothers me. So we could define the inner product of a complex vector space as
<v,u> = v1u1 + v2u2 + v3u3
with no complex conjugates but we would lose some nice properties that are convenient such as length?
 
One reason that comes to mind is that by defining the inner product as <v,u> = v1*u1 + v2*u2 + v3*u3 you get a real number for <v,v> as you said and that is needed for a prehilbert space (where <v,v>=0 <=> v=0 and otherwise <v,v> > 0), which is basically the generalization of the Euclidean space for a complex field.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top