Why do antisymmetric eigenvalues have to be purely imaginary?

  • Thread starter Thread starter SeReNiTy
  • Start date Start date
  • Tags Tags
    Eigenvalues
SeReNiTy
Messages
170
Reaction score
0
Why do they have to purely imaginary?

I got a proof that looks like Ax=ax
where a = eigenvalue

therefore Ax.x = ax.x = a|x|^2

Ax.x = x.(A^t)x
where A^t = transpose = -A
x.(-A)x = -b|x|^2

therefore a=-b, where b = conjugate of a

Now is this as far as i need to go?
 
Physics news on Phys.org
Write it as a=x+iy, b=x-iy, now you're saying what...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top