In a similar way:
When moving around a point a little, with movement being a in the x direction and b in the y direction, then the increase of the function is just the sum of how much it increased when moving in the x direction and how much it increased when moving in the y direction, meaning (\partial f/\partial x)a+ (\partial f/\partial y)b
Notice that the same expression can be written as the dot product of two vectors (a, b) \cdot(\partial f/\partial x, \partial f/\partial y). Keeping the length of the movement vector constant, this expression is maximal when the vectors point in the same direction, because the dot product multiplies both of their lengths with cosine of the angle between them. So the direction of the gradient vector we usefully defined gives the direction of the largest increase and also the maximal increase per unit length, as can be seen by taking an unit movement vector. Also notice for example that when the vectors point in opposite directions, the value is the smallest, ie the decrease is the largest.