\displaystyle \begin{align*} \frac{dy}{dx}\sin{(x)} &= y\ln{(y)} \\ \frac{1}{y\ln{(y)}}\,\frac{dy}{dx} &= \frac{1}{\sin{(x)}} \\ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx} &= \frac{\sin{(x)}}{\sin^2{(x)}} \\ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx} &= \frac{\sin{(x)}}{1 - \cos^2{(x)}} \\ \int{\frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx}\,dx} &= \int{\frac{\sin{(x)}}{1 - \cos^2{(x)}}\,dx} \\ \int{ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,dy} &= -\int{ \frac{-\sin{(x)}}{1 - \cos^2{(x)}}\,dx} \end{align*}
Now make the substitutions \displaystyle \begin{align*} u = \ln{(y)} \implies du = \frac{1}{y}\,dy \end{align*} and \displaystyle \begin{align*} v = \cos{(x)} \implies dv = -\sin{(x)}\,dx \end{align*} and the DE becomes
\displaystyle \begin{align*} \int{\frac{1}{u}\,du} &= -\int{ \frac{1}{1 - v^2}\,dv} \end{align*}
This should now be easy to solve. The RHS requires partial fractions.