Why does (-1)^n(sin(pi/n)) converge when (sin(p/n)) diverges

solour
Messages
9
Reaction score
0

Homework Statement


I know that ∑n=1 to infinity (sin(p/n)) diverges due using comparison test with pi/n, despite it approaching 0 as n approaches infinity.

However, an alternating series with (-1)^n*sin(pi/n) converges. Which does not make sense because it consists of two diverging functions.

Is there any intuitive explanation for this? Or is it just a rule that I need to remember when treating alternating series

Thank you.
 
Physics news on Phys.org
How about this: For large n, sin(π/n) is approximately π/n, so the series is approximately πΣ(1/π) which is known to diverge.

With alternating signs, the series approximates πΣ( (1/n) - 1/(n+1) ) which approaches π.ln(2). Actually I think I find it more persuasive to group pairs of successive terms:
(1/n) - 1/(n+1) = 1/(n(n+1)) = O(1/n2), but I gather that's not always a safe thing to do.
 
solour said:
However, an alternating series with (-1)^n*sin(pi/n) converges. Which does not make sense because it consists of two diverging functions.
The fact that ##\sum (-1)^n## and##\sum \sin(\pi/n)## both diverge says absolutely nothing about the alternating series. If you don't believe that, you might consider ##a_n = b_n = 1/n##. Neither ##\sum a_n## nor ##\sum b_n## converge, but ##\sum a_nb_n = \sum 1/n^2## converges.
 
  • Like
Likes Jamison Lahman
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top