Why Does A_n Converge in This Markov Chain Problem?

  • Thread starter Thread starter spitz
  • Start date Start date
  • Tags Tags
    Limit
spitz
Messages
57
Reaction score
0

Homework Statement



Consider:

P=\left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)

Show that P^n has no limit, but that: A_n=\frac{1}{n+1}(I+P+P^2+\ldots+P^n) has a limit.

The Attempt at a Solution



I can see that P^{EVEN}=\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) and P^{ODD}=\left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), so a steady state is never reached, but I can't figure out the second part.

Any suggestions?
 
Physics news on Phys.org
So for example

I+P+P2+P3+P4+P5 =
[3 3]
[3 3]

and when you divide this by six you get a matrix with all 1/2s. Try adding up some more guys and see what happens
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top