Why Does Heat Transfer Direction Differ in Triangular and Rectangular Fins?

Click For Summary
The discussion centers on the differences in heat transfer direction between triangular and rectangular fins. The primary confusion arises from the assumption that heat transfer direction is influenced by the varying cross-sectional area of the fins. However, it is clarified that the direction of heat flow is dictated by temperature gradients and boundary conditions rather than the geometry of the fin. The equations governing heat transfer are discussed, emphasizing that heat moves from higher to lower temperatures. Understanding the specific boundary conditions at the ends of the fins is crucial for determining the heat transfer behavior.
roughwinds
Messages
11
Reaction score
0

Homework Statement


I'm unsure of what exactly is changing the heat transfer direction in the triangular fin.

Homework Equations


$$q_{x} = -kA(x)\frac{dT(x)}{dx} (1)$$
$$q_{x+dx} = -kA(x)\frac{dT(x)}{dx} - k\frac{d}{dx}[A(x)\frac{dT(x)}{dx}] (2)$$
$$dq_{conv} = h(x)dS(x)P[T(x) - T_{∞}] (3)$$
A = cross-sectional area m²
q = heat transfer rate W
h = convection heat transfer coefficient W/m²K
k = thermal conductivity W/mK
T = temperature K
dq = convection heat transfer rate
dS = surface area of the differential element
Tb = base surface temperature K
A0 = base area
L = length

The Attempt at a Solution


Energy balance:
$$q_{x} = dq_{conv} + - q_{x+dx} (4)$$
Substitute (1), (2) and (3) in (4):
$$\frac{d}{dx}[A(x)\frac{dT(x)}{dx}] - \frac{h(x)dS(x)}{kdx}[T(x) - T_{∞}] (5)$$
$$X = \frac{x}{L}$$
$$\theta(X) = \frac{T(X) - T_{∞}}{T_{b} - T_{∞}}$$
$$K(X) = \frac{A(X)}{A_{0}}$$
$$W(X) = \frac{h(X)dS(X)}{P_{0}h_{av}dX}$$
$$M = mL$$
$$m² = \frac{h_{av}P_{0}}{kA_{0}}$$
$$\frac{dS(X)}{dX} = p(X)$$
Substitute into (5) and rearrange:
$$\frac{d}{dX}[K(X)\frac{d\theta(X)}{dX}] - W(X)M²\theta(X) = 0 (6)$$

Rectangular profile:
1.png

A(X) = A0, K(X) = 1, W(X) = 1
$$\frac{d}{dX}[\frac{d\theta(X)}{dX}] - M²\theta(X) = 0$$

Triangular profile:
2.png


A(X) =/= A0, K(X) = ~ X, W(X) = 1
$$\frac{d}{dX}[X\frac{d\theta(X)}{dX}] - M²\theta(X) = 0$$

I did the energy balance thinking of the heat going from left to right like it's shown on the rectangular fin, but on the triangular fin it goes on the opposite direction. Which is fine for what I want to do, but why exactly does this happen? Due to the equations involved the heat will only move from a bigger to an equal or smaller area? Which adjustments would I have to make to change the heat transfer direction and make a fin like this:
3.png
 
Physics news on Phys.org
Could you be a bit clearer as to the original problem you are trying to solve (rather than the problem you're having with it...). I think I could figure that out with some effort but I'm not inclined to exert that effort right now.
 
I did the energy balance thinking of the heat going from left to right like it's shown on the rectangular fin, but on the triangular fin it goes on the opposite direction. Which is fine for what I want to do, but why exactly does this happen? Due to the equations involved the heat will only move from a bigger to an equal or smaller area? Which adjustments would I have to make to change the heat transfer direction and make a fin like this:
View attachment 103858
The direction that the heat flows has nothing to do with how the area is varying. It has everything to do with how the temperature is varying. This is determined the the boundary conditions on the fin. What are the boundary conditions being applied on the two ends of your fin?
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
14K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
6K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
17K
Replies
4
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K