Why Does My Calculated Derivative Differ from Mathematica's?

Orion1
Messages
961
Reaction score
3

I am attempting to find the derivative of this function using the definition of derivative, however my solution is not the same as Mathematica's solution.

Is my formulation incorrect on some protocol somewhere? :rolleyes:

G(t) = \frac{4t}{t + 1}
G'(t) = \lim_{h \rightarrow 0} [(\frac{4(t + h)}{(t + h) + 1}) - (\frac{4t}{t + 1})] \frac{1}{h}

\lim_{h \rightarrow 0} [(\frac{4(t + h)}{(t + h) + 1}) - (\frac{4t}{t + 1})] \frac{1}{h} = \lim_{h \rightarrow 0} 4 [\frac{(t + h)(t + 1)}{(t + h + 1)(t + 1)} - \frac{t(t + h + 1)}{(t + 1)(t + h + 1)}] \frac{1}{h}

\lim_{h \rightarrow 0} 4[ \frac{(t + h)(t + 1) - t(t + h + 1)}{(t + h + 1)(t + 1)}] \frac{1}{h} = \lim_{h \rightarrow 0} 4[ \frac{(t^2 + ht + t + h - t^2 - ht - t)}{(t^2 + ht + 2t + h + 1)}] \frac{1}{h}

\lim_{h \rightarrow 0} [ \frac{4h}{(t^2 + ht + 2t + h + 1)}] \frac{1}{h} = \lim_{h \rightarrow 0} ( \frac{4}{t^2 + ht + 2t + h + 1} ) = \frac{4}{t^2 + 2t + 1}

\boxed{G'(t) = \frac{4}{(t + 1)^2}}

Mathematica solution:
- \frac{4t}{(1 + t)^2} + \frac{4}{t + 1}
[/Color]
 
Physics news on Phys.org
\frac{4}{(t+1)^2}=- \frac{4t}{(1 + t)^2} + \frac{4}{t + 1}


No mistakes :smile:

Check it!
 
Orion1 said:
I am attempting to find the derivative of this function using the definition of derivative, however my solution is not the same as Mathematica's solution.
Is my formulation incorrect on some protocol somewhere? :rolleyes:
G(t) = \frac{4t}{t + 1}
G'(t) = \lim_{h \rightarrow 0} [(\frac{4(t + h)}{(t + h) + 1}) - (\frac{4t}{t + 1})] \frac{1}{h}
\lim_{h \rightarrow 0} [(\frac{4(t + h)}{(t + h) + 1}) - (\frac{4t}{t + 1})] \frac{1}{h} = \lim_{h \rightarrow 0} 4 [\frac{(t + h)(t + 1)}{(t + h + 1)(t + 1)} - \frac{t(t + h + 1)}{(t + 1)(t + h + 1)}] \frac{1}{h}
\lim_{h \rightarrow 0} 4[ \frac{(t + h)(t + 1) - t(t + h + 1)}{(t + h + 1)(t + 1)}] \frac{1}{h} = \lim_{h \rightarrow 0} 4[ \frac{(t^2 + ht + t + h - t^2 - ht - t)}{(t^2 + ht + 2t + h + 1)}] \frac{1}{h}
\lim_{h \rightarrow 0} [ \frac{4h}{(t^2 + ht + 2t + h + 1)}] \frac{1}{h} = \lim_{h \rightarrow 0} ( \frac{4}{t^2 + ht + 2t + h + 1} ) = \frac{4}{t^2 + 2t + 1}
\boxed{G'(t) = \frac{4}{(t + 1)^2}}
Mathematica solution:
- \frac{4t}{(1 + t)^2} + \frac{4}{t + 1}
[/Color]

It's the same result, so yours is also correct.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top