Why does rotating a ball on a string faster makes it horizontal

AI Thread Summary
When a ball on a string is rotated faster, it becomes more horizontal due to the relationship between tension, gravity, and centripetal force. The vertical component of tension must balance gravity, while the horizontal component provides the necessary centripetal force. As the ball's speed increases, more centripetal force is required, which causes the angle of the string to decrease. The concept of centrifugal force is clarified as an apparent force experienced in a rotating reference frame, rather than a real force acting on the ball. Ultimately, the string cannot become completely horizontal, as infinite tension would be required to achieve that state.
musik132
Messages
11
Reaction score
0
Hi suppose i had a ball on string and started to rotate it in a circle around my hand. When i increase the speed of the ball it becomes more and more horizontal.
The only forces i can think of at play is centripetal and centrifugal forces and the force exerted by my hand and gravity. Is somehow the centripetal force's verticle component greater than the centrifugal's or is it something else?
 
Physics news on Phys.org
Actually - as you are looking at it, there is no centrifugal force.
There is the tension in the string which has radial and vertical components, and gravity, which is only vertical.

The vertical component of the tension has to be equal to gravity.
The horizontal component has to be the centripetal force.
The centripetal force is related to the angular velocity of the ball ... so what is happening is that to go faster the ball need more centripetal force - but only the same lift against gravity to hold it up. Since both these forces come from the same place (the tension in the string) then the string gets more horizontal.

It can never get completely horizontal though.--------------------
From the POV of an ant-physicist on the ball, there is a gravity force pointing down and a centrifugal force pointing horizontally to it. There is also a tension force in the string which exactly balances the other two. The the string were at 45deg then the centrifugal force would be equal to the gravity force ... the faster the ball goes, the bigger the centrifugal force and so the bigger the horizontal component of the tension has to be to balance it... so the angle has to be less than 45deg.
 
Last edited:
so just to check my thinking:
Ft = tension Fg = gravity Fc = centripetal
Ftcosθ = Fg and Fc=mrω^2=Ftsinθ
If ω increases the angle must go up but if the angle goes up doesn't Ftcosθ become less which would mean an increase in tension in order to counteract gravity? So an increase in ω changes both Ft and sinθ

and why isn't there a centrifugal force?
there is a "apparent outward force that draws a rotating body away from the center of rotation. It is caused by the inertia of the body as the body's path is continually redirected" wikipedia
 
musik132 said:
If ω increases the angle must go up but if the angle goes up doesn't Ftcosθ become less which would mean an increase in tension in order to counteract gravity?

Indeed. To reach 90 degrees ω and the tension would need to be infinite.
 
musik132 said:
and why isn't there a centrifugal force?
there is a "apparent outward force that draws a rotating body away from the center of rotation. It is caused by the inertia of the body as the body's path is continually redirected" wikipedia
That's exactly it - it is only an apparent force. The reference you used also explains.

It did not belong in your initial description because "you" doing the observing are not rotating with the ball. No reason for you to have an inertial correction. You do feel the ball pull back on the string but recall - you are providing the applied force to the center. This is an unbalanced force resulting in acceleration towards the center which you see as circular motion.

The ant in my description has a different POV. He sees no centripetal forces, but it does make sense to talk about his experience in terms of the centrifugal pseudoforce.

In Newtonian physics, the appearance of a pseudoforce in your physics is a clue that you are in an accelerating reference frame.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top