Why Does Second Collision in Ballistic Pendulum Lead to Initial State?

AI Thread Summary
The discussion centers on the behavior of a ballistic pendulum during two collisions, emphasizing the symmetry and conservation principles involved. After the first collision, the first ball reaches its initial height, while the second collision presents a mathematical ambiguity with two potential solutions for velocity. The key to resolving this lies in recognizing that the balls are solid objects, not point particles, which prevents them from occupying the same space. When considering non-equal masses, the same principles apply, but the velocities do not exchange cleanly. Ultimately, the conversation highlights the importance of momentum and energy conservation in determining the physical outcomes of the collisions.
The Head
Messages
137
Reaction score
2
I was thinking about ballistic pendulums and the symmetry they exhibit. In the simplest case, you have one ball that begins at a certain height and collides with another ball at rest. You can calculate via conservation of momentum and energy the new velocities and max vertical displacements. Then, if you let the system continue and the second collision occurs, the first ball will be propelled to its initial height. This makes sense in terms of symmetry.

However, when I mathematically solve it, I technically get two solutions for what happens after both collisions. When solving for the velocity of the second ball, it factors and I get a zero and a non-zero solution. For the first collision I know we choose the non-zero solution because it moves. For the second, we choose the zero solution because of symmetry. But is there a better reason for this?

If it's useful, in the simple case where the balls are equal masses, after substituting my momentum equation into the energy one, I worked out that v_2(v_2 - sqrt(2gh))=0. I'm not concerned about the actual values of the velocity, but it appears to say that either v_2 = 0 or sqrt(2gh), where 'h' is the initial height that ball one was raised to. The same equation occurs after the second collision. How do we know to choose v_2 = sqrt(2gh) for the first collision and v_2=0 for the second?
 
Physics news on Phys.org
You can show in general that when balls of equal mass collide elastically, they exchange velocities. That's the key to understanding this.
 
  • Like
Likes vanhees71 and The Head
We reject the solutions that have one ball moving through the other.

It's worth noting that this approach works because the balls are not point particles but rather solid objects that cannot both occupy the same volume of space. If they were point particles they would occupy no volume; the ambiguity you've found is the result of idealizing them as point particles; and we eliminate it by remembering at the last moment that they aren't really point particles.

Even then the solution only works because the balls are constrained to move in only one direction. If you take the same approach to the elastic collision of two identical point masses free to move in two dimensiosn (idealized billiard balls on a billiards table) you will find an infinite number of solutions because the balls can rebound in any direction, and you will have no way of rejecting any solution in favor of some other. Instead, we have to take on the much hairier problem of colliding balls; the rebound angle depends in complicated ways on the exact point of contact.
 
  • Like
Likes vanhees71, hutchphd and The Head
kuruman said:
You can show in general that when balls of equal mass collide elastically, they exchange velocities. That's the key to understanding this.

Thanks for your reply and that does make sense. Though if they aren't equal, I get a similar equation with two solutions (one equal to zero and one non-zero), but in that case the velocities wouldn't have a clean exchange.

The simplest version of non-equal masses would be if the first ball were lighter than the second ball, and after the initial collision the first ball would swing back to some degree and the second would swing forward to some degree. Then they'd collide again and it would force the first ball back to it's initial position and the second would come to rest. How does one know to choose the non-zero velocity for collision #1, but not #2?
 
Nugatory said:
We reject the solutions that have one ball moving through the other.

It's worth noting that this approach works because the balls are not point particles but rather solid objects that cannot both occupy the same volume of space. If they were point particles they would occupy no volume; the ambiguity you've found is the result of idealizing them as point particles; and we eliminate it by remembering at the last moment that they aren't really point particles.

Even then the solution only works because the balls are constrained to move in only one direction. If you take the same approach to the elastic collision of two identical point masses free to move in two dimensiosn (idealized billiard balls on a billiards table) you will find an infinite number of solutions because the balls can rebound in any direction, and you will have no way of rejecting any solution in favor of some other. Instead, we have to take on the much hairier problem of colliding balls; the rebound angle depends in complicated ways on the exact point of contact.

Ohhh! Yes, of course. If the second ball remained at rest and the first ball went forward, that would make no sense! And after the second collision the signs reverse for the non-zero velocity, so that would also be a contradiction.
 
Nugatory said:
We reject the solutions that have one ball moving through the other.
Strictly speaking, this "other" solution is not incorrect or unphysical and should not be rejected. It is the solution that satisfies momentum and energy conservation for the two-ball system when the balls are moving in one dimension in parallel tracks and go past each other. It would be unphysical if momentum and energy were not conserved in this case.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...

Similar threads

Replies
1
Views
2K
Replies
9
Views
1K
Replies
1
Views
2K
Replies
53
Views
4K
Replies
4
Views
2K
Replies
13
Views
1K
Back
Top