Why Does Taylor's Theorem Use +O(ε) Instead of -O(ε)?

gionole
Messages
281
Reaction score
24
Homework Statement
Help me with taylor's theorem
Relevant Equations
Help me with taylor's theorem
I am trying to grasp how the last equation is derived. I understand everything, but the only thing problematic is why in the end, it's ##+O(\epsilon)## and not ##-O(\epsilon)##. It will be easier to directly attach the image, so please, see image attached.
 

Attachments

  • Screenshot 2023-12-27 at 1.32.29 PM.png
    Screenshot 2023-12-27 at 1.32.29 PM.png
    8.6 KB · Views: 85
Physics news on Phys.org
I am not accustomed the way of the text. What is the text you use ?
 
O-notation tells you about the magnitude of the error in some limit, in this case \epsilon \to 0; the sign of the error can depend on \epsilon, so it is conventional to use a plus sign.
 
The expression, ##f=g+O(\epsilon)## means that there exists such positive number ##M## that ##|f-g| \leq M|\epsilon|##.
OTOH, ##f=g-O(\epsilon)## means ##g=f+O(\epsilon)##, which means that there exists such positive number ##M## that ##|g-f| \leq M|\epsilon|##. This is the same as above. So, one can always use ##+O(\epsilon)##.
 
  • Like
  • Love
Likes WWGD and gionole
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top