Why Does the Basis (1, 1, 1) Satisfy the Given System of Linear Equations?

AI Thread Summary
The system of linear equations a - 2b + c = 0 and 2a - 3b + c = 0 defines a subspace in R^3, where the solutions can be expressed as (a, b, c) with a = b = c. The basis (1, 1, 1) is valid because all solutions can be represented as scalar multiples of this vector, indicating that the subspace is one-dimensional. The intersection of the two planes represented by the equations forms a line in R^3, which necessitates three components for the basis vector. Thus, while (1, 1, 1) is one possible basis, any scalar multiple such as (2, 2, 2) or (3, 3, 3) also satisfies the conditions. The requirement for three numbers in the basis reflects the dimensionality of the solution space within R^3.
vsage
Ok another question:

13. The set of solutions to the system of linear equations

a - 2b + c = 0
2a - 3b + c = 0

is a subspace of R^3. Find a basis for this subspace

The book claims one of the possible bases is (1, 1, 1) but I don't see how. I mean I realize a = b = c from the above just am not making the connection why there has to be THREE 1's. Originally I had (1, 1) but I really can't remember why. Is it because since a, b and c are equal, all the solutions to the above in (a, b, c) format are given by d(1, 1, 1) where d is a scalar?
 
Physics news on Phys.org
vsage said:
Ok another question:

13. The set of solutions to the system of linear equations

a - 2b + c = 0
2a - 3b + c = 0

is a subspace of R^3. Find a basis for this subspace

Makes perfect sense. Think about it...the set of solutions is a set of real numbers (a, b, c) that satisfy both linear equations. It sounds like such a set has three components, necessitating that it be a vector in R3. In fact, a = b = c is satistied by vectors of the form (1, 1, 1)...(2, 2, 2), ...(3, 3, 3). But all of these can be written as linear combinations of (1, 1, 1). Which is exactly what you said...all others are scalar multiples of that vector. The subspace is the line through the origin. One vector is sufficient to span a 1-dimensional subspace, but that subspace is located in R3, so the basis vector must have three components.

Another way to look at it...those two equations define two planes in R3, (where in this case our coordinate space is formed from the mutually orthogonal a, b, and c axes) and evidently they intersect in the line a = b = c.
 
Last edited:
If you were just trying to SOLVE the equations, you would subract one from the other to cancel the "c" terms and get -a+ b= 0. Okay, a= b. Now put that back into the first equation: setting a= b gives -a+ c= 0 so a= c. If you put a= b= c into the second equation, you find it is automatically solved: any numbers a= b= c satisfy both equations so (a, b, c)= (a, a, a)= a(1, 1, 1). The have to be THREE numbers in the "basis" because your solution consists of 3 numbers, a, b, c.

(By the way, your book says "one of the possible bases" because, of course, (2, 2, 2) or (3, 3, 3) or any set of 3 identical numbers would work.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top