I Why Does the Complex Conjugate Involve Negating the Argument Theta?

Leo Liu
Messages
353
Reaction score
156
unknown.png

Can someone please tell me why this is true? This isn't exactly the De Moivre's theorem. Thank you.
 

Attachments

  • 1638792130216.png
    1638792130216.png
    5.8 KB · Views: 131
Mathematics news on Phys.org
If you try to justify that formula, where do you get stuck?
 
  • Like
Likes Leo Liu
$$\bar z^2=(x-yi)^2$$
$$\bar z^2=r^2(\cos\theta-i\sin\theta)^2$$
$$\bar z^2=r^2(\cos(2\theta)-i\sin(2\theta))$$
$$\bar z^2=r^2(\cos2\theta+i\sin(-2\theta))$$
$$\bar z^2=r^2(\cos(-2\theta)+i\sin(-2\theta))$$
I got it. Thanks.
 
What about:
$$\bar z^2 = (re^{-i\theta})^2 = r^2e^{-2i\theta} =r^2(\cos (-2\theta) +i\sin(-2\theta))$$
 
  • Like
  • Love
Likes hutchphd, Leo Liu and FactChecker
PeroK said:
What about:
$$\bar z^2 = (re^{-i\theta})^2 = r^2e^{-2i\theta} =r^2(\cos (-2\theta) +i\sin(-2\theta))$$
I actually stated that I didn't want to use this method on the course chat haha.
1638798004769.png

Thank you though! It is very neat.
 
Leo Liu said:
I actually stated that I didn't want to use this method on the course chat haha.
View attachment 293673
Thank you though! It is very neat.
You should study each part you doubt until it is intuitive to you. It is very fundamental and important.
In words explain why:
If ##z=re^{i\theta}##, why does ##\bar{z}=re^{-i\theta}##?
Then why does ##\bar{z}^2=re^{-i2\theta}##?
etc.
 
  • Like
Likes PeroK
Many mathematicians consider Euler's Formula, ##e^{i\theta} = \cos{\theta} + i\sin{\theta}##, to be the most important equation in mathematics. You should get very comfortable with using it.
 
Last edited:
  • Wow
Likes Leo Liu
You can also just to algebra on the conjugate expressed in terms of ##\theta##, and then apply double angle trig formulas, if you want to see it verified brute force. It works out very straightforward this way, though, of course, using exponentials is far more elegant.
 
FactChecker said:
If z=reiθ, why does z¯=re−iθ?
I guess it's because $$\text{cis}(-\theta)=e^{-i\theta}$$. :wink:
 
  • #10
Leo Liu said:
I guess it's because $$\text{cis}(-\theta)=e^{-i\theta}$$. :wink:
Yes. Negating the imaginary part of ##z=x+iy = r(\cos\theta+ i\sin\theta)## to get ##\bar{z}= x-iy = r(\cos\theta- i\sin\theta)## is the same as negating the argument, ##\theta##, to get ##\bar{z}=r(\cos{(-\theta)} + i\sin{(-\theta)})= r(\cos\theta- i\sin\theta)##.

It looks like every line in your original post is correct (I didn't look hard at it.), but it is not clear how you got some lines and if you understood it. At least in the beginning, it is good practice to really spell everything out. You can skip some details after you are well beyond that level, but not before.
 
Last edited:
  • Like
Likes Leo Liu
Back
Top