Why does the dot product in this solution equal zero?

Click For Summary
SUMMARY

The discussion centers on the dot product of vectors a and b in the context of proving that the medians bisecting the equal sides of an isosceles triangle are equal. Participants clarify that the dot product does not necessarily equal zero, even if the vectors are not perpendicular. The relevant equations provided include a · b = |a| × |b| × cos(θ) and a · b = ax × bx + ay × by. The consensus is that the proof remains valid regardless of the dot product's value.

PREREQUISITES
  • Understanding of vector mathematics, specifically dot products.
  • Familiarity with isosceles triangles and their properties.
  • Knowledge of relevant equations involving vectors, such as a · b = |a| × |b| × cos(θ).
  • Basic skills in geometric proofs and reasoning.
NEXT STEPS
  • Study vector properties and their applications in geometry.
  • Explore proofs related to isosceles triangles and their medians.
  • Learn about the implications of the dot product in various geometric contexts.
  • Investigate common misconceptions in vector mathematics and their resolutions.
USEFUL FOR

Students studying geometry, mathematics educators, and anyone interested in vector analysis and geometric proofs.

Darkmisc
Messages
222
Reaction score
31
Homework Statement
Prove that the medians bisecting the equal sides of an isosceles triangle are equal.
Relevant Equations
a · b = |a| × |b| × cos(θ)
a · b = ax × bx + ay × by
Hi everyone

I have the solutions for the problem. It makes sense except for one particular step.

Why does the dot product of a and b equal zero? I thought this would only be the case if a and b were at right angles to each other. The solutions seem to be a general proof and should work for all isosceles triangles (not just right angle triangles).

The solution would still make sense even if a · b didn't equal zero. Why does it equal zero here?

Thanks

image_2022-09-21_131238624.png

image_2022-09-21_131315774.png
 
Physics news on Phys.org
Darkmisc said:
Homework Statement:: Prove that the medians bisecting the equal sides of an isosceles triangle are equal.
Relevant Equations:: a · b = |a| × |b| × cos(θ)
a · b = ax × bx + ay × by

Hi everyone

I have the solutions for the problem. It makes sense except for one particular step.

Why does the dot product of a and b equal zero? I thought this would only be the case if a and b were at right angles to each other. The solutions seem to be a general proof and should work for all isosceles triangles (not just right angle triangles).

The solution would still make sense even if a · b didn't equal zero. Why does it equal zero here?

Thanks

View attachment 314417
View attachment 314418
I don't think you need a b = 0 for the proof to work.
Edit: Now I just saw that you wrote just that.
Maybe they just forgot the missing terms.
 
Last edited:
  • Like
Likes   Reactions: Darkmisc
Darkmisc said:
Homework Statement:: Prove that the medians bisecting the equal sides of an isosceles triangle are equal.
Relevant Equations:: a · b = |a| × |b| × cos(θ)
a · b = ax × bx + ay × by

Hi everyone

I have the solutions for the problem. It makes sense except for one particular step.

Why does the dot product of a and b equal zero? I thought this would only be the case if a and b were at right angles to each other. The solutions seem to be a general proof and should work for all isosceles triangles (not just right angle triangles).

The solution would still make sense even if a · b didn't equal zero. Why does it equal zero here?

Thanks

View attachment 314417
View attachment 314418
I'll echo Philip Koeck above, it does not matter if ##a \cdot b = 0##. As you can see, if |a| = |b| then
##a \cdot a - a \cdot b + \dfrac{1}{4} b \cdot b = \dfrac{1}{4} a \cdot a - a \cdot b + b \cdot b##
whether ##a \cdot b = 0## or not. But (never trust a diagram!) it almost looks like the diagram has a and b perpendicular. It seems that this is the whole problem statement but is there somewhere that says a and b are perpendicular?

-Dan
 
  • Like
Likes   Reactions: Darkmisc
topsquark said:
I'll echo Philip Koeck above, it does not matter if ##a \cdot b = 0##. As you can see, if |a| = |b| then
##a \cdot a - a \cdot b + \dfrac{1}{4} b \cdot b = \dfrac{1}{4} a \cdot a - a \cdot b + b \cdot b##
whether ##a \cdot b = 0## or not. But (never trust a diagram!) it almost looks like the diagram has a and b perpendicular. It seems that this is the whole problem statement but is there somewhere that says a and b are perpendicular?

-Dan
No, it wasn't specified that a and b are perpendicular. I also think Philip Koeck was right about them forgetting to delete a · b.

There was a previous problem in which a and b were perpendicular. Maybe that's what caused the authors to mistakenly say that a · b = 0 in the present problem.
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
8K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
22
Views
4K
Replies
6
Views
2K