jonbones
- 4
- 0
Homework Statement
This is a simple problem I thought of and I'm get a nonsensical answer.
I'm not sure where I'm going wrong in the calculation.
Find the value of <-,p',v';+,q',r'|H|-,p,v;+,q,r>
where H is the free-field Dirac Hamiltonian
H = \int(d3k/(2\pi)3)\sums(\widehat{c}+s(k)\widehat{c}s(k)+(\widehat{d}+s(k)\widehat{d}s(k))
Homework Equations
<p|q> = 2Ep(2\pi)3\delta(3)(p-q)
|+,q,r> = (2Eq)1/2\widehat{d}+r(q)|0>
|-,p,v> = (2Ep)1/2\widehat{c}+v(p)|0>
The Attempt at a Solution
<-,p',v';+,q',r'|H|-,p,v;+,q,r> = <-,p',v';+,q',r'|Hc|-,p,v;+q,r>+<-,p',v';+q',r'|Hd|-,p,v;+,q,r>
<-,p',v';+q',r'|Hc|-,p,v;+,q,r> = \int(d3k/{(2\pi)3)\sums<-,p',v';+,q',r'|\widehat{c}+s(k)\widehat{c}s(k)|-,p,v;+q,r>
= \int(d3k/{(2\pi)3)\sums<-,p',v'|\widehat{c}+s(k)\widehat{c}s(k)|-,p,v><+,q',r'|+q,r>
= 1/(2\pi)3(2Ev)-1<-,p',v'|-,p,v><+q',r'|+q,r>
= (2\pi)32Eq\delta(3)(v-v')\delta(3)(q-q')
Similarly, <-,p',v';+q',r'|Hd|-,p,v;+,q,r> = (2\pi)32Ev\delta(3)(v-v')\delta(3)(q-q')
I know these are wrong since <-,p',v';+q',r'|Hc|-,p,v;+,q,r> \proptoEp and <-,p',v';+q',r'|Hd|-,p,v;+,q,r> \proptoEq.
I'm pretty sure I'm calculating the operator pieces like <-,p',v';+,q',r'|\widehat{c}+s(k)\widehat{c}s(k)|-,p,v;+q,r> incorrectly but I'm not sure where I'm going wrong.
-- Jonathan