Why does the limit(n->∞) sqrt(n)/(sqrt(n)+sqrt(n+1)) equal 1/(1+sqrt(1-1/n))?

  • Thread starter Thread starter h0p3d545
  • Start date Start date
  • Tags Tags
    Limits
h0p3d545
Messages
3
Reaction score
0

Homework Statement


I am studying for a calculus test tomorrow on this website (http://archives.math.utk.edu/visual.calculus/6/index.html). I am working on the limit comparison test problems but I am unfamiliar with the form they use in their solutions. For example:
Limit comparison test (prove convergence / divergence)
Series (from n=1 to ∞) 1/(sqrt(n)+sqrt(n+1))

Homework Equations

The Attempt at a Solution


Series (from n=1 to ∞) 1/(sqrt(n)+sqrt(n+1)) compare to Series (from n=1 to ∞) 1/sqrt(n), which we know diverges by the p-series test (p=.5, p<1)
Let an = 1/(sqrt(n)+sqrt(n+1)) and bn = 1/sqrt(n)
lim(n->∞) an/bn
= lim(n->∞) 1/(sqrt(n)+sqrt(n+1)) / 1/sqrt(n)
= lim(n->∞) sqrt(n)/(sqrt(n)+sqrt(n+1))

I can see why this limit is 1/2 but I don't understand how the solution to the problem ended up in the form
lim(n->∞) 1/(1+sqrt(1-1/n)) = 1/2
I can tell by the other solutions that this form is a rule of sorts but I don't know what it is.
Thank you for the help.
 
Physics news on Phys.org
h0p3d545 said:

Homework Statement


I am studying for a calculus test tomorrow on this website (http://archives.math.utk.edu/visual.calculus/6/index.html). I am working on the limit comparison test problems but I am unfamiliar with the form they use in their solutions. For example:
Limit comparison test (prove convergence / divergence)
Series (from n=1 to ∞) 1/(sqrt(n)+sqrt(n+1))

Homework Equations

The Attempt at a Solution


Series (from n=1 to ∞) 1/(sqrt(n)+sqrt(n+1)) compare to Series (from n=1 to ∞) 1/sqrt(n), which we know diverges by the p-series test (p=.5, p<1)
Let an = 1/(sqrt(n)+sqrt(n+1)) and bn = 1/sqrt(n)
lim(n->∞) an/bn
= lim(n->∞) 1/(sqrt(n)+sqrt(n+1)) / 1/sqrt(n)
= lim(n->∞) sqrt(n)/(sqrt(n)+sqrt(n+1))

I can see why this limit is 1/2 but I don't understand how the solution to the problem ended up in the form
lim(n->∞) 1/(1+sqrt(1-1/n)) = 1/2
I can tell by the other solutions that this form is a rule of sorts but I don't know what it is.
Thank you for the help.
Factor ##\sqrt{n}## from the two terms of ##\sqrt{n}## + ##\sqrt{n + 1}##.
 
OH. so if you multiply
sqrt(n)/(sqrt(n)+sqrt(n+1)) by (1/sqrt(n))/(1/sqrt(n)) you get 1/(sqrt(n)+sqrt(n+1))/sqrt(n) which can simplify to 1/(sqrt(n/n)+sqrt(n/n+1/n)) or 1/(1+sqrt(1+1/n))
 
h0p3d545 said:
OH. so if you multiply
sqrt(n)/(sqrt(n)+sqrt(n+1)) by (1/sqrt(n))/(1/sqrt(n)) you get 1/(sqrt(n)+sqrt(n+1))/sqrt(n) which can simplify to 1/(sqrt(n/n)+sqrt(n/n+1/n)) or 1/(1+sqrt(1+1/n))
No, it's simpler than that. Just factor ##\sqrt{n}## out of the numerator and denominator. The ##\sqrt{n}## factors can be cancelled, and you're left with the form you see in the solution.
 
Oh, ok. I understand. Thank you!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top