Why Does the Tensor Product Become a Wedge Product in Dolbeault Cohomology?

nrobins
Messages
2
Reaction score
0

Hi,
I am edging my way towards Dolbeault cohomology on a complex manifold and one of the constructions involves taking the kth exterior product of a direct sum (the decomposition of the cotangent bundle into holomorphic and antiholomorphic subspaces). This relies on a theorem from multilinear algebra that says that the result is the direct sum of tensor products of exterior products of the subspaces (sorry but I do not have the Latex to set down the formula).

My problem is that when coordinates are subsequently used, the tensor product metamorphoses into a wedge product and I cannot convince myself that these are equivalent. I have not found a proof of the multilinear algebra theorem so I am not clear why a tensor product is required in the first place.

I appreciate that this is a rather detailed question of technique but it won't leave me alone!

Any suggestions?

Thank you in anticipation
 
Physics news on Phys.org
Thank you for your response.
The reference that you give is indeed the eventual result required, but my query relates to the algebraic establishment of this via the general result (e.g. Wikipedia, "Exterior Algebra" section 4.2 on Direct Sums which starts
"In particular, the exterior algebra of a direct sum is isomorphic to the tensor product of the exterior algebras:" ).
This can of course be applied to the decomposition of the cotangent bundle induced by the almost complex structure. The step that I am missing is the change from a tensor product to a wedge product in the final result that you quote involving local coordinates.

BTW I have no doubt about the validity of the result that you reference (which can probably be established quite easily by induction) just this underying bit of multilinear algebra.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top