Undergrad Why does this inverse square calculation fail to predict actual data?

Click For Summary
The inverse square law (ISL) fails to accurately predict light dimming over a distance of 168 mm due to the nature of a matrix of LEDs, which does not behave as a point source. The size of the LED matrix, measuring 3/4" square, exceeds the distance to the detector, complicating the intensity calculations. Light emission is likely not uniform in all directions, further invalidating the ISL application. A mathematical analysis shows that the intensity from two incoherent point sources does not conform to the ISL unless specific conditions are met. As the distance increases, the discrepancy from the ISL diminishes.
JimLub
Messages
1
Reaction score
1
TL;DR
A simple test using solar cell and LEDs - shows dramatic differences between predictions and actual data. Test results are shown in attached file.
The test data and notes are attached - showing that the inverse square calculations fail to reasonably predict the actual dimming of light over a test distance of 168 mm. Did I err in my test design or my calculations?
 

Attachments

Physics news on Phys.org
A matrix of LEDs is not a point source - not even a good approximation at short distances. At 3/4" square, it is bigger than the distance to the detector at the closest distance. There is no way that this is going to give you an inverse square dependence of the intensity. I don't suppose it's even emitting light equally in all directions.
 
It's an easy calculation to show where the ISL fails, using two point incoherent sources, spaced at a certain distance and with a detector at some distance away. The resulting intensity will be
1/R12 +1/R22
which is not 2/R2
except when R1 = R2
i.e. along a normal to mid point of the line of centres.
Edit: as R increases, the departure from ISL is less and less.
 
Last edited:
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 18 ·
Replies
18
Views
8K
  • · Replies 49 ·
2
Replies
49
Views
10K
  • · Replies 0 ·
Replies
0
Views
4K