Why doesn't √-1×√-1 always equal 1 in complex numbers?

AI Thread Summary
The discussion clarifies that the expression √-1 × √-1 does not equal 1 due to the properties of complex numbers. It explains that √-5 equals i√5, leading to the conclusion that √-5 × √-5 equals -5, not 5. The rule √a × √b = √(ab) is only valid for nonnegative real numbers, which does not apply in this case. Therefore, i^2 equals -1, reinforcing the distinction between real and complex number operations. Understanding these principles is crucial for correctly handling complex numbers.
Gourav kumar Lakhera
Messages
2
Reaction score
0
As we know that √-5×√-5=5 i.e multiplication with it self
My question is that according to this √-1×√-1=1.but it does not hold good in case of i(complex number).
I.e i^2 =-1. Why?
 
Mathematics news on Phys.org
Gourav kumar Lakhera said:
As we know that √-5×√-5=5
No, this is not true. ##\sqrt{-5} = i\sqrt{5}## so ##\sqrt{-5} \cdot \sqrt{-5} = i^2 (\sqrt{5})^2 = -5##, not 5 as you show above.
Gourav kumar Lakhera said:
i.e multiplication with it self
My question is that according to this √-1×√-1=1
This isn't true, either, for the same reason as above.
Gourav kumar Lakhera said:
.but it does not hold good in case of i(complex number).
I.e i^2 =-1. Why?

You are apparently using the rule that ##\sqrt a \sqrt b = \sqrt{ab}##. That rule holds only when both a and b are nonnegative real numbers.
 
Thnkuu buddy
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

3
Replies
108
Views
10K
Replies
7
Views
3K
Replies
13
Views
2K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
12
Views
2K
Replies
3
Views
1K
Back
Top