tom.stoer said:
Could you provide some hints what PTI has to say about QFT? I agree that it's interesting as an interpretation of QM, but afaik there is no equivalent line of discussion for QFT (do you know Esfeld's book on "philosophy of physics"? it seems to me that there are no reasonable interpretations of QFT on the market)
In addition: you start reasoning based on your paper, based on propagators and perturbative formalism; once confronted with technical arguments regarding an ill-defined starting point and regarding missing key issues your response is to read a book. Does this book contain a nonperturbative analysis of non-abelian quantum gauge theory? If no, then why should I read that book? I still think that you don't address the key issues. But w/o a detailed analysis of these issues and w/o the construction of a well-defined formalism it does no makes sense to interpret a formalism.
The claim in your last sentence regarding the restriction of interpretation to a 'well-defined formalism' is simply not borne out by careful study. I address this in my book as well, with reference to MacKinnon (ref on request) -- who finds that trying to restrict interpretive efforts to a 'rational reconstruction' of a given (messy or imperfect) theory leads to no better insight than simply working to interpret an existing functioning theory, which is what QM is -- however messy and mathematically 'ill-defined'. QM itself, at both the non-relativistic and relativistic levels, has always had an 'ill-defined starting point'. I'm not creating a new theory, I'm interpreting an existing theory: i.e., proposing physical referents for objects in the theory that do computational work leading to good empirical corroboration. See Chapter 2 of my book for details.
Regarding the previous post expressing dissatisfaction with what I've said here, and as for 'missing key issues in my response' -- as I noted earlier, I have very limited time to spend on this forum. I saw an interesting question --the beginning of the thread -- asking about virtual photons, to which I thought I might contribute, since I have published work on this topic and I think the model I'm working with is an interesting and fruitful one. No, the model has not been extended in detail to QCD. But neither, to my knowledge, have the following competing interpretations of QM: (1) many world theories (2) ad-hoc spontaneous collapse theories (3) The Bohmian theory (4) decoherence-based approaches (which, as I've noted, utterly fail to really solve the measurement problem despite their claims), or any other 'mainstream' interpretation of QM of which I'm aware. So why use that as a criticism of PTI? If you yourselves began to explore the PTI model, you might break some new ground and find that it indeed does shed light on some of the issues that you've demanded that I explain here in detail, such as non-Abelian gauge theories. There is a seed here that could be planted and yield fruit, so let's not reject it out of hand.
Regarding the impatience expressed by someone here with my asking that you read my papers and my book before making demands for detailed explanations on PF: again, my time to spend here is limited. I saw a question about virtual particles in the context of decoherence, and provided a suggestion that the PTI model has something useful to say about it -- especially since decoherence arguments are so inadequate to understanding collapse and determinate results in QM. I've already put quite a bit of time and effort into these publications, and I don't quite see how it's a reasonable request for me to rewrite them all here. It's already out there for you to read. If you read it and you still have questions, I'm happy to engage those. But again, I don't think you'll find detailed interpretive treatments of non-Abelian gauge theories in competing interpretive models of QM. Everettian theories are still struggling to explain the Born Rule in their model. So go ahead and explore the PTI model wrt QCD -- I look forward to reading your own work on this.
As for the question about the propagator, as I've said repeatedly, quantities such as VEV values of fields -- more generally, Wightmann correlation functions -- have a well-defined interpretation in PTI as possible offer waves -- that is, entities that have a less-than-unity amplitude for becoming offer waves |X> -- i.e. what you take as well-defined 'quantum systems'. The specific amplitude is given by the relevant coupling constant. I have not 'shifted' my position on this as someone implied above, I've taken note where someone is reading meaning into 'virtual particle' that I did intend. No, of course a 'virtual particle' is not a corpuscle on a worldline so if someone defines a virtual particle that way, that's not, and has never been, what I'm talking about.
Re what PTI has to say about QFT, a detailed QFT discussion applying to the PTI model, although he doesn't himself apply it to the transactional picture, is in Davies' papers:
Davies, P. C. W. (1970). “A quantum theory of Wheeler-Feynman Electrodynamics,” Proc. Cam. Phil. Soc. 68, 751.
___________(1971).”Extension of Wheeler-Feynman Quantum Theory to the Relativistic Domain I. Scattering Processes,” J. Phys. A: Gen. Phys. 6, 836.
____________(1972).”Extension of Wheeler-Feynman Quantum Theory to the Relativistic Domain II. Emission Processes,” J. Phys. A: Gen. Phys. 5, 1025-1036.
And I address this in some detail in my
http://arxiv.org/abs/1204.5227 (FoP)
If you read my book, you'll see that PTI does not involve a spacetime continuum, so that's why there is a natural end to the perturbation expansion (if that computational approach is used) and why lattice gauge theory is probably a more accurate underlying framework. In either case, propagators are an essential component of the process and they have a clear ontological meaning in PTI as nascent offer waves (or if you will, 'failed' or 'aborted' offer waves), with the coupling amplitudes quantitatively characterizing their 'nascence' or degree of presence. Yes, these may be unfamiliar concepts, but that doesn't mean they are ill-defined. Remember we are dealing with quantum entities, not the classical world, and remember Ernan McMullin's comment.
So again, I very much appreciate your interest, and I hope you will continue to explore the TI/PTI picture. Remember that everything about PTI with which you have expressed dissatisfaction or reservations (i.e., certain details not fully explained on this forum, no obvious resolution to the challenge of QCD, etc, -- applies
even more so to competing QM interpretations. At least TI/PTI can readily explain the Born Rule and the nature of collapse! So put the model to work yourselves, and see what you might do with it, rather than assuming
a priori that it will fail.
I am available for discussion by way of my website:
transactionalinterpretation.org
With warm regards,
RK