JaredPM said:
What is the logic behind equating differential equations to zero? For example the equation
y''-5y'+6y=0
Because it can just as easily be written y''-5y'=-6y
I am interested in the meaning of why if we sum y''+(-5y')+6y equals zero. What is the relationship of its second derivative, first derivative, and 6y?
I would say it is similar to solving quadratic equations, saying ax^2+bx+c=0. We could move the c over, but after factoring to (x-x_1)(x-x_2)=0, it is easier to read off the roots. Also, sometimes there is a function of t on the right,
y''-5y'+6y=f(t),
and the business on the left is considered in methods apart and together with f. There's a number of reasons, and at the same time, it's not really a big deal. We can move c over, in ax^2+bx=-c, and we often do if we are completing the square, but it's still usually presented as "=0".
Try reading some of the methods on techniques for solving the
homogeneous second-order constant-coefficient differential equation (f=0). Try also reading about finding a particular solution for the inhomogeneous second-order linear differential equation (they have some techniques that work for linear in general, and some that only work for the constant-coefficient case). Then try to find where they descripe ho to put together the homogeneous solutions and a particular solution to get the full solution set.
This may give you an idea as to why it's more comfortable to put all the y terms on the left. Also, note that, if anything, it might make more sense to put the y'' on the left, like y''=f(t,y,y'). Compare this with something you may have seen, y'=p(t)y(t)+q(t)=f(t,y).
In retrospect, one might answer your question by saying we write it this way when our differential equation is a "linear" differential equation, meaning, as opposed to any general differential equation which can be written
y^(n)=f(t,y,y'',...,y^(n-1)),
it is of the special form
a_n(t)*y^(n)(t)+a_{n-1}(t)*y^(n-1)(t)+...+a_2(t)*y''(t)+a_1(t)*y'(t)+a_0(t)*y(t)=f(t).
That is, the coefficients are functions of t, and there are no terms like sin(y'') or (y')^3. The form we have written it in is in a form ready to use many of the methods of solving. Why on Earth do we have such a bizarre definition of linear? I feel this is because differential equations of the above form, obey a very nice property, in that we can add solutions. In other words, the solution space forms a vector space (offset by a particular solution, so I think we call it affine. Think of it as a plane shifted away from the origin.)