- #1

- 111

- 2

## Main Question or Discussion Point

The best experimental tests of the general relativity: of frame dragging by Gravity Probe B, use calculations from approximation of GRT, called gravitomagnetism: http://en.wikipedia.org/wiki/Gravitoelectromagnetism

It was originally introduced by Oliver Heaviside in 1893 as expansion of Newton's gravity to Lorentz invariant theory by analogue of Maxwell equations. The correction is that while rotating charge creates magnetism, rotating mass creates analogous effects, like frame dragging.

I wanted to ask about the arguments, experimental evidence/suggestions that gravitomagnetism is not the end of the story and we need higher order terms of GRT?

The huge freedom of local behavior of the spacetime makes GRT non-renormalizable ... while electromagnetism and so gravitomagnetism are renormalizable - maybe for the unification it would be better to focus on some simpler higher order terms?

It was originally introduced by Oliver Heaviside in 1893 as expansion of Newton's gravity to Lorentz invariant theory by analogue of Maxwell equations. The correction is that while rotating charge creates magnetism, rotating mass creates analogous effects, like frame dragging.

I wanted to ask about the arguments, experimental evidence/suggestions that gravitomagnetism is not the end of the story and we need higher order terms of GRT?

The huge freedom of local behavior of the spacetime makes GRT non-renormalizable ... while electromagnetism and so gravitomagnetism are renormalizable - maybe for the unification it would be better to focus on some simpler higher order terms?