Why infinite conducting rod - Gauss's Law , uses lambda?

Click For Summary

Discussion Overview

The discussion revolves around the use of linear charge density (lambda, λ) versus surface charge density (sigma, σ) when applying Gauss's Law to infinite conducting rods and thin-walled cylindrical shells. Participants explore the implications of charge distribution on electric fields in these contexts, examining both theoretical and practical aspects.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants question why linear charge density (λ) is used instead of surface charge density (σ) for conducting rods, noting that charges are distributed on the surface.
  • One participant suggests that using λ is often more convenient than σ, implying that it simplifies calculations in certain scenarios.
  • Another participant draws a parallel to charged conducting spheres, stating that the electric field outside the sphere is equivalent to that of a point charge at its center, suggesting a similar reasoning applies to cylindrical conductors.
  • It is noted that when calculating electric fields, the distance from the wire is more relevant than its length, which supports the use of λ in certain contexts.

Areas of Agreement / Disagreement

Participants express differing views on the appropriateness of using λ versus σ, with no consensus reached on the best approach for applying Gauss's Law to infinite conducting rods.

Contextual Notes

Participants highlight the need for clarity regarding the definitions and applications of λ and σ, as well as the conditions under which each is used. There is an acknowledgment of the complexities involved in charge distribution and electric field calculations.

annoyingdude666
Messages
2
Reaction score
0
hi, i still don't understand why infinite thin-walled cylindrical shell or conducting rod use lambda rather than sigma ?
lambda = C/m ,,, sigma = C/m^2

i mean when we look at conducting rod, the charges inside the conductor is zero, so the charges spread on the surface of conducting rod(have same form as thin-walled cylindrical shell), which is when we calculate the electricfield use gauss's Law using formula :

integral(E . dA) = q enclosed / vacuum permitivity

the q enclosed is sigma times the surface area , rather than lambda times length ?

i find this from "Fundamental of Physics" Halliday Resnick
 
Physics news on Phys.org
Hello
annoyingdude666 said:
hi, i still don't understand why infinite thin-walled cylindrical shell or conducting rod use lambda rather than sigma ?
lambda = C/m ,,, sigma = C/m^2

i mean when we look at conducting rod, the charges inside the conductor is zero, so the charges spread on the surface of conducting rod(have same form as thin-walled cylindrical shell), which is when we calculate the electricfield use gauss's Law using formula :

integral(E . dA) = q enclosed / vacuum permitivity

the q enclosed is sigma times the surface area , rather than lambda times length ?

i find this from "Fundamental of Physics" Halliday Resnick
Hello annoyingdude666 . Welcome to PF.

Using linear density, λ, is often more convenient than using surface charge density, σ . If the problem can be solved with either method, I would use the simpler method.
 
SammyS said:
Hello

Hello annoyingdude666 . Welcome to PF.

Using linear density, λ, is often more convenient than using surface charge density, σ . If the problem can be solved with either method, I would use the simpler method.

hello SammyS
thank you for answering my question
btw, i still don't understand.
what do you mean by "more convenient" or "more simpler" ? can u explain why ?

because from what i know, the charges of conducting rod spread on its surface (surface = area), so why we use lambda rather than sigma ?
it doesn't make sense to me hehe
 
annoyingdude666 said:
hello SammyS
thank you for answering my question
btw, i still don't understand.
what do you mean by "more convenient" or "more simpler" ? can u explain why ?

because from what i know, the charges of conducting rod spread on its surface (surface = area), so why we use lambda rather than sigma ?
it doesn't make sense to me hehe
This is similar to the case of a charged conducting sphere. You could go through the trouble of finding the surface charge density, However, the electric field external to the sphere is the same as if were to replace the sphere with an equal charge placed at the sphere's center.

Similarly, if the charge on the surface of the infinitely long cylindrical conductor is replaced by the corresponding linear charge placed along the cylinder's axis, the electric field external to the conductor remains the same.
 
  • Like
Likes   Reactions: cnh1995
Hello annoyingdude666. I am a beginner at this, so please bear with me:

According to what you originally asked, integral(E . dA) = q enclosed / vacuum permitivity

So yes, we can say E = q(in) / (permitivity*2πrl) = sigma*A / permitivity. However, at this stage, we are dealing with interactions between these charged wires/plates, and particles; therefore, we only need to know how far the particle is from the wire, rather than how long it is, since it has 0 length. That is why SammyS was saying it is more convenient to say E = lambda*l/permitivity = lambda /(2πr*permitivity*r), where r is perpendicular distance from wire, then to leave it as E = sigma/permitivity
 

Attachments

  • upload_2016-2-7_8-33-31.png
    upload_2016-2-7_8-33-31.png
    241 bytes · Views: 697
^Since the wire only has length, and not area, it also makes more sense to use lambda rather than sigma
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
904
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K