Thank you for your answer, marcus.
I also like the beatiful idea of background independence, rooted in Einsteins perception of the need of a relational theory, I'm just trying to understand whether this is really necessary or not.
Background independence in GR means, as far as I understand, that the Lagrangian on a manifold does not contain any fixed fields, or, let's say, fields which are fixed by definition when aplying the principle of least action.
Background dependence means usualy that a field, the metric, is fixed with a predefined value. Then, perturbations of this field aplying Lagrangian theory should give physical solutions. In theory, perturbation can be done on any background that satisfies Einsteins Equations.
In general, I would agree that the second approach is not desiderable, that the background should be treated as a field like others. But it's still unclear for me whether this an argument to assert that there is no spacetime which can be considered as the primordial spacetime without mass-energy (e.g. the flat Minkowski spacetime). Let's formulate this in a more philosophical way (I'm not sure whether this is a good idea, but anyway): How far is spacetime independent from matter and energy? In principle, GR tells us it makes no sense to speak about spacetime before constraining it to a speficic mass-energy scenario. But, if such a spacetime exists (e.g. the flat Minkowski spacetime), is it only a specific solution for an unphysical scenario, or does it represent a primordial state? (I hope this is more or less clear, despite of my bad english).
Your objection:
"start with a blank vanilla metric that no mass or energy has created. Would it be static or expanding or contracting or what? If it was totally non-expanding and flat (Minkowski) how would adding stuff every change it enough?"
may be illuminating in this sense. I think I should take a look to this in detail. Also I will read Smolins paper.
On the other hand other questions might be also interesting, like what happens if spacetime is not a manifold...
Regards.