Why Is C Written as \frac{1}{N_0} in the Solution Manual?

kasse
Messages
383
Reaction score
1
<br /> \frac{dN}{dt}=-k_sN^2<br />

Attempt:

<br /> \frac{1}{N^2}dN = -k_s dt<br />

Integrate:

<br /> -\frac{1}{N} + C = -k_s t<br />

In the solution manual, C is written [/tex]\frac{1}{N_0}[/tex]

Why?
 
Physics news on Phys.org
You posted this already and I replied to it in the other thread.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top