X89codered89X
- 149
- 2
I found a particular integral in my stat book.
\frac{d}{ d\theta}\int^{b(\theta)}_{a(\theta)}f(\theta,t)dt = <br /> <br /> \int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt + <br /> <br /> f( \theta, b( \theta)) \frac {\partial b(\theta)}{ \partial \theta} - <br /> <br /> f(\theta, a(\theta))\frac{ \partial a(\theta)}{\partial \theta}
Why is this the case? Why is it not...
\int^{b(\theta)}_{a(\theta)}f(\theta,t)dt = <br /> <br /> \int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt + <br /> <br /> \frac{d}{ d\theta} [F( \theta, b( \theta)) - F(\theta, a(\theta))]<br /> <br />
EDITED: Fixing LaTeX, as per usual. Sorry Folks.
\frac{d}{ d\theta}\int^{b(\theta)}_{a(\theta)}f(\theta,t)dt = <br /> <br /> \int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt + <br /> <br /> f( \theta, b( \theta)) \frac {\partial b(\theta)}{ \partial \theta} - <br /> <br /> f(\theta, a(\theta))\frac{ \partial a(\theta)}{\partial \theta}
Why is this the case? Why is it not...
\int^{b(\theta)}_{a(\theta)}f(\theta,t)dt = <br /> <br /> \int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt + <br /> <br /> \frac{d}{ d\theta} [F( \theta, b( \theta)) - F(\theta, a(\theta))]<br /> <br />
EDITED: Fixing LaTeX, as per usual. Sorry Folks.
Last edited: