Why is lim \int (a,x) f(x) dx not equal to 0?

  • Thread starter Thread starter tomboi03
  • Start date Start date
  • Tags Tags
    Integral
tomboi03
Messages
74
Reaction score
0
Prove: If f is integrable on [a,b] then
lim \int(a,x) f=0

I put If F is integrable for every E>0, partition,P, U(f,P) - L(f,P) <E
This also means that f is integrable on [a,a+]

If \int (x,x) f(x) dx =0
F(x)-F(x)=0
Since f is integrable, if can be differentiable (he said that this was wrong)
lim \int (a,x) f(x) dx
x\rightarrowa+

lim \int (a,x) f(x) dx
x\rightarrowa

lim \int (a,x) f(x) dx
x\rightarrowa-

are all equal then
lim \int (a,x) f(x) dx
x\rightarrowa+


what am i doing wrong?
 
Physics news on Phys.org
"[a, a+]" is not an interval.

The limits of integration should not depend on x.

Integrability does not imply differentiability. For example, |x| is integral on [-1, 1] but not differentiable at 0.

It's not clear how the parts of your proof are connected.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top