I Why is m_j not a good quantum number in strong-field Zeeman effect?

Happiness
Messages
686
Reaction score
30
TL;DR Summary
When solving for the correction to the Hamiltonian due to strong-field Zeeman effect (using perturbation theory), why is m_j not a "good" quantum number, given that J_z is conserved too?
This textbook claims ##m_j## is not a "good" quantum number because the total angular momentum (of an electron of a hydrogen atom placed in a strong uniform magnetic field) is not conserved. I don't understand why ##m_j## is not a "good" quantum number.

Screenshot 2024-07-07 at 4.40.30 AM.png


Since ##J=L+S##, ##J_z=L_z+S_z##.
Since ##L_z## and ##S_z## are both conserved, so is ##J_z##.
##J_z## commutes with ##H'_Z## too.
So shouldn't ##m_j## be a "good" quantum number too?

The phrase "good quantum number" relates to the following theorem in perturbation theory:

Screenshot 2024-07-07 at 4.41.34 AM.png

Screenshot 2024-07-07 at 4.41.46 AM.png


The book is "Introduction to Quantum Mechanics", 2nd edition, by David Griffiths.
 
Physics news on Phys.org
Happiness said:
Since ##L_z## and ##S_z## are both conserved, so is ##J_z##.
But ##J## is not, and ##m_j## is a quantum number for ##J##, not ##J_z##.
 
PeterDonis said:
But ##J## is not, and ##m_j## is a quantum number for ##J##, not ##J_z##.

This is the remaining part of the section in the book:
Screenshot 2024-07-07 at 6.46.45 AM.png


From the sentence below [6.81], we can see that eigenstates of ##S_z## and ##L_z## were used as the "good" states ##\ket{nlm_lm_s}## in the perturbation theory in [6.80].

So my question is, aren't eigenstates of ##J_z## "good" states too?

The book did not define quantum numbers explicitly. From what I understand from the book, since ##m_j## is the eigenvalue of operator ##J_z##, ie, ##J_z\psi=\hbar m_j\psi## (where ##\psi## is an eigenstate of ##J_z##), then ##m_j## is the quantum number for ##J_z##. This is how I understand it. (##m_j## is the eigenvalue apart from a factor of ##\hbar##.)
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...

Similar threads

Replies
14
Views
2K
Replies
5
Views
2K
Replies
13
Views
2K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
4
Views
3K
Back
Top