B Why is probability defined in space rather than at a point in quantum mechanics?

  • B
  • Thread starter Thread starter Naman Jain Kota
  • Start date Start date
  • Tags Tags
    Doubt Probability
Naman Jain Kota
Messages
12
Reaction score
0
I have started quantum mechanics on my own using online lectures. So i have very basic doubts:

1) probability of electron is defined in space rather than a point. My question is why don't we comment about probability at a point.
I thought two possible explanation that:
1.1)ψ2dx the dx term goes zero so probablity at point is zero
1.2)electron is itself not a point object(which i don't know is true or not) 2)if we are given real valued wavefunction graphs can we can we comment on probablity density without knowing the complex part.(i hope not)
 
Physics news on Phys.org
Hello Naman, :welcome:

1) probability density is defined. As you indicate, probability itself can only be given for a volume, not for a point.

2) no we can not. But 'real valued wavefunction graphs' are rare: most of the time we get presented amplitude graphs.
 
  • Like
Likes bhobba and Naman Jain Kota
Ok, so can we say probablity at a point is zero always.
And is electron point object??
BvU said:
Hello Naman, :welcome:

1) probability density is defined. As you indicate, probability itself can only be given for a volume, not for a point.

2) no we can not. But 'real valued wavefunction graphs' are rare: most of the time we get presented amplitude graphs.
 
For all we know it is, yes. http://gabrielse.physics.harvard.edu/gabrielse/overviews/ElectronSubstructure/ElectronSubstructure.html are of the order of ##10^{-20}## m. Just try to imagine the charge density :smile: !
 
  • Like
Likes bhobba
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top