Final
- 25
- 0
Hi...
Consider a neutrino with a Dirac mass m_\nu and the weak interaction
{\cal{L}}=\frac{g}{2 \sqrt{2}} \sum_l[{W_{\mu}^+ \cdot \bar{\psi}_{\nu_l} \gamma^{\mu}(1-\gamma_5)\psi_l + W_{\mu}^- \cdot \bar{\psi}_{l} \gamma^{\mu}(1-\gamma_5)\psi_{\nu_l} }\right{]} + \frac{g}{4 \cos(\theta_w)} <br /> \sum_l Z_{\mu}[ \bar{\psi}_{\nu_l} \gamma^{\mu}(1-\gamma_5)\psi_{\nu_l} +\bar{\psi}_{l} \gamma^{\mu}(a+b\gamma_5)\psi_{l} ]
Why this interaction doesn't change the helicity of the neutrino? It is true?
Consider a neutrino with a Dirac mass m_\nu and the weak interaction
{\cal{L}}=\frac{g}{2 \sqrt{2}} \sum_l[{W_{\mu}^+ \cdot \bar{\psi}_{\nu_l} \gamma^{\mu}(1-\gamma_5)\psi_l + W_{\mu}^- \cdot \bar{\psi}_{l} \gamma^{\mu}(1-\gamma_5)\psi_{\nu_l} }\right{]} + \frac{g}{4 \cos(\theta_w)} <br /> \sum_l Z_{\mu}[ \bar{\psi}_{\nu_l} \gamma^{\mu}(1-\gamma_5)\psi_{\nu_l} +\bar{\psi}_{l} \gamma^{\mu}(a+b\gamma_5)\psi_{l} ]
Why this interaction doesn't change the helicity of the neutrino? It is true?