alejandrito29
- 148
- 0
why in the problem of dirac delta potential, the integral
\int^{\epsilon}_{-\epsilon}\phi''(x)dx is equal to \phi'(\epsilon)-\phi'(-\epsilon)?
but \int^{\epsilon}_{-\epsilon}\phi(x)dx is equal to 0
if, for example\phi(x)=e^x
then \phi(x)''=\phi(x)
but, the firts integral is e^{\epsilon}-e^{-\epsilon}
and the second integral would be to zero
i don't understand
\int^{\epsilon}_{-\epsilon}\phi''(x)dx is equal to \phi'(\epsilon)-\phi'(-\epsilon)?
but \int^{\epsilon}_{-\epsilon}\phi(x)dx is equal to 0
if, for example\phi(x)=e^x
then \phi(x)''=\phi(x)
but, the firts integral is e^{\epsilon}-e^{-\epsilon}
and the second integral would be to zero
i don't understand
Last edited by a moderator: