SqueeSpleen
- 138
- 5
If f_{n} \underset{n \to \infty}{\longrightarrow} f in L^{p}, 1 \leq p < \infty, g_{n} \underset{n \to \infty}{\longrightarrow} g pointwise and || g_{m} ||_{\infty} \leq M \forall n \in \mathbb{N} prove that:
f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} fg in L^{p}
My attemp:
\displaystyle \int | f_{n} g_{n} - f g_{n} |^{p} = \displaystyle \int | g_{n} | | f_{n} - f |^{p} \leq M^{p} \displaystyle \int | f_{n} - f |^{p}
Then f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} f g_{n} in L^{p}
Now let's prove that f g_{n} \underset{n \to \infty}{\longrightarrow} fg in L^{p}
g_{n} \longrightarrow g a.e. \Longrightarrow g_{n} \underset{\longrightarrow}{m} g
\forall \varepsilon > 0, \forall \delta > 0, \exists n_{0} \in \mathbb{N} / \forall n \geq n_{0} :
| D | = | \{ x / | g_{n} (x) - g(x) | \geq \delta \} | < \varepsilon
\displaystyle \int | f g_{n} - fg |^{p} = \displaystyle \int | f |^{p} | g_{n} - g |^{p} \leq \displaystyle \int_{D} | f |^{p} M^{p} + \displaystyle \int_{D^{c}} | f |^{p} \delta^{p}
I know | D | < \varepsilon, but f isn't necessarily bounded in D, I need to prove that \int_{D} | f |^{p} \longrightarrow 0 as | D | \to 0
Anyone has any idea?
Is this approach right or the last step is false and I need to rework the proof enterely?
Edit 2: Edit 1 was completely wrong so I deleted it.
f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} fg in L^{p}
My attemp:
\displaystyle \int | f_{n} g_{n} - f g_{n} |^{p} = \displaystyle \int | g_{n} | | f_{n} - f |^{p} \leq M^{p} \displaystyle \int | f_{n} - f |^{p}
Then f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} f g_{n} in L^{p}
Now let's prove that f g_{n} \underset{n \to \infty}{\longrightarrow} fg in L^{p}
g_{n} \longrightarrow g a.e. \Longrightarrow g_{n} \underset{\longrightarrow}{m} g
\forall \varepsilon > 0, \forall \delta > 0, \exists n_{0} \in \mathbb{N} / \forall n \geq n_{0} :
| D | = | \{ x / | g_{n} (x) - g(x) | \geq \delta \} | < \varepsilon
\displaystyle \int | f g_{n} - fg |^{p} = \displaystyle \int | f |^{p} | g_{n} - g |^{p} \leq \displaystyle \int_{D} | f |^{p} M^{p} + \displaystyle \int_{D^{c}} | f |^{p} \delta^{p}
I know | D | < \varepsilon, but f isn't necessarily bounded in D, I need to prove that \int_{D} | f |^{p} \longrightarrow 0 as | D | \to 0
Anyone has any idea?
Is this approach right or the last step is false and I need to rework the proof enterely?
Edit 2: Edit 1 was completely wrong so I deleted it.
Last edited: