Here's a simple analogous example: Imagine you have a die, but the numbers painted on the faces are {1,2,2,2,5,6}. Now I roll the die:
What is the most probable outcome (or the mode)? It's clearly 2.
What is the mean outcome? It's (1+2+2+2+5+6)/6=3.
The mean is greater than the mode because, while most of the faces of the die have small numbers, there are some with very big numbers that drag the mean up.
Now what does the distribution of speeds of gas molecules look like?
Hi,
I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem.
Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$
Where ##b=1## with an orbit only in the equatorial plane.
We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$
Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units,
According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##,
## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units.
So is this conversion correct?
Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?