Why is the probability of measuring an eigenvalue its coefficient squared?

timn
Messages
19
Reaction score
0

Homework Statement



This is an example from Gasiorowicz's Quantum Physics. "Example 3-1" is a particle in an infinite potential-well, but that should not matter.

qm-gasiorowicz-3-11.png


Homework Equations



The Attempt at a Solution



Why is P(-2) (which I suppose is the probability that the eigenvalue -2 is measured) the coefficient squared?

The sum of the squares of the coefficient should be normalised, so it makes sense, but I don't understand why.

To figure out how much an eigenfunction contributes to the probability function -- psi^2 -- I'd square psi as follows:

<br /> \left( \frac{N}{4}\sqrt{2\pi}(u_ {-2}+2u_0+u_2) \right)^2<br /> = \frac{N^2\pi^2}{8}(u_ {-2}^2+2u_0^2+u_2^2+2u_{-2}u_2+4u_{-2}u_0+4u_0u_2)<br />

followed by being completely lost.

Could anyone explain this or make it seem plausible for me?

Edit: For reference, the answer is P(-2)=1/6.
 
Physics news on Phys.org
timn said:

Homework Statement



This is an example from Gasiorowicz's Quantum Physics. "Example 3-1" is a particle in an infinite potential-well, but that should not matter.

qm-gasiorowicz-3-11.png


Homework Equations



The Attempt at a Solution



Why is P(-2) (which I suppose is the probability that the eigenvalue -2 is measured) the coefficient squared?

The sum of the squares of the coefficient should be normalised, so it makes sense, but I don't understand why.

To figure out how much an eigenfunction contributes to the probability function -- psi^2 -- I'd square psi as follows:

<br /> \left( \frac{N}{4}\sqrt{2\pi}(u_ {-2}+2u_0+u_2) \right)^2<br /> = \frac{N^2\pi^2}{8}(u_ {-2}^2+2u_0^2+u_2^2+2u_{-2}u_2+4u_{-2}u_0+4u_0u_2)<br />

followed by being completely lost.

Could anyone explain this or make it seem plausible for me?

Edit: For reference, the answer is P(-2)=1/6.

You can start this way if you want. Once you take the (absolute) square of psi, then remember that psi is normalized so let:

<br /> \int\left( \frac{N}{4}\sqrt{2\pi}(u_ {-2}+2u_0+u_2) \right)^2 d\phi<br /> = \frac{N^2\pi^2}{8}\int(u_ {-2}^2+2u_0^2+u_2^2+2u_{-2}u_2+4u_{-2}u_0+4u_0u_2)d\phi=1<br />

Use the othogonality of the eigenfunctions to simplify the integral. Notice that terms like u_n^*u_m with m\not= n will integrate to zero. Thus after all the integrations are done, you should be left with:

\frac{2\pi N^2}{16}\int(|u_2|^2+4|u_0|^2+|u_{-2}|^2)d\phi=1

Simplify this by integrating. You will see that the sum of the absolute squares of the coefficients will be equal to one, and thus it also follows from your line of reasoning that the squares of the coefficients are the correct measure of probabilities for different eigenstates.
 
Last edited:
Aha! I had forgotten about the orthogonality. Also, I had an epiphany when I realized that A_n = \int_0^a u_n^*(x) \psi(x) dx is just a projection.

Thank you!
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top