Why Is the Tear Drop Shape Optimal for Hot Air Balloons?

AI Thread Summary
The tear-drop shape of hot air balloons is optimal due to the pressure differential between the inside and outside, which varies from the top to the bottom. This shape minimizes tension while supporting the weight of the gondola, with tension being constant throughout the material. The curvature of the balloon is greatest at the top where the pressure difference is highest, resembling a sphere, and decreases towards the bottom. Calculating the ideal shape involves understanding the pressure gradient and applying mathematical equations, including the ideal gas law. Further exploration into the numerical methods and differential equations can provide a more accurate representation of this shape.
Poseidonho
Messages
12
Reaction score
0
I had read an article about a hot air balloon, when coming into balloon shape design, I had question on it.
For best shape of the air balloon was the tear drop shape, but I do not know what is the physics behind it. From the article I read is about the pressure vector, and he is using an example of the water pressure and the depth. But I can't found any mathematical proving on it or the detail.

So any suggestion where I can find more detail information about the shape of hot air balloon?
 
Physics news on Phys.org
It's fairly simple. First, you need to understand that you can give it almost any shape at an expense of extra tension. I'm sure you've seen all these crazy-looking novelty hot air balloons designed to look like castles, parade floats, or whatever. So the goal should be to have only necessary tension. That means, all of the tension is there to support weight. The most important conclusion you can get from this is that you can consider just a 2D slice across the center of the balloon. So we are looking for that tear-drop shape in a 2D model.

Second, for simplicity, let's assume that the material itself weighs nothing. It isn't true, but you get same qualitative result either way. If you just want to understand why the shape is tear-drop, it's not important. So all of the weight is due to the gondola, and the tension throughout material is constant. Since we are looking at the 2D case, the tension throughout is just half of the gondola's weight. Half, because in 2D the gondola is supported from two sides.

Finally, we look at what's happening to air pressure in the balloon. The hot air balloon is open at the bottom. So at the bottom, the pressure is the same inside and out. However, because density inside is lower, the pressure gradient is lower. That means pressure at the top of balloon is higher. We are going to ignore the fact that as pressure changes, so does density. That's a small correction. So we have now a pressure difference inside and out that's highest at the top and drops to zero at the bottom. That pressure difference will push outward on the balloon at every point.

Now, suppose you have a string under tension. How much force can it apply sideways? That will depend on the curvature. A straight stretch of string will not apply any sideways force. So to support a load, the string must bend. The load perpendicular to the string that stands for the skin of the balloon in the 2D case is due to the pressure. So the surface of the balloon will be most curved where pressure differential is highest. As a result, the top of the balloon will look like the top of a sphere. As you go lower, the curvature will decrease. At the bottom, where pressure differential is almost zero, this wil make a straight line to the gondola.

Running all of this through a numerical diff eq solver, I get the following shape. Positive x is "up". Sorry, I didn't rotate it or scale it better.

attachment.php?attachmentid=53906&d=1355474952.png
 

Attachments

  • Balloon.png
    Balloon.png
    1.8 KB · Views: 2,885
K^2 said:
It's fairly simple. First, you need to understand that you can give it almost any shape at an expense of extra tension. I'm sure you've seen all these crazy-looking novelty hot air balloons designed to look like castles, parade floats, or whatever. So the goal should be to have only necessary tension. That means, all of the tension is there to support weight. The most important conclusion you can get from this is that you can consider just a 2D slice across the center of the balloon. So we are looking for that tear-drop shape in a 2D model.

Second, for simplicity, let's assume that the material itself weighs nothing. It isn't true, but you get same qualitative result either way. If you just want to understand why the shape is tear-drop, it's not important. So all of the weight is due to the gondola, and the tension throughout material is constant. Since we are looking at the 2D case, the tension throughout is just half of the gondola's weight. Half, because in 2D the gondola is supported from two sides.

Finally, we look at what's happening to air pressure in the balloon. The hot air balloon is open at the bottom. So at the bottom, the pressure is the same inside and out. However, because density inside is lower, the pressure gradient is lower. That means pressure at the top of balloon is higher. We are going to ignore the fact that as pressure changes, so does density. That's a small correction. So we have now a pressure difference inside and out that's highest at the top and drops to zero at the bottom. That pressure difference will push outward on the balloon at every point.

Now, suppose you have a string under tension. How much force can it apply sideways? That will depend on the curvature. A straight stretch of string will not apply any sideways force. So to support a load, the string must bend. The load perpendicular to the string that stands for the skin of the balloon in the 2D case is due to the pressure. So the surface of the balloon will be most curved where pressure differential is highest. As a result, the top of the balloon will look like the top of a sphere. As you go lower, the curvature will decrease. At the bottom, where pressure differential is almost zero, this wil make a straight line to the gondola.

Running all of this through a numerical diff eq solver, I get the following shape. Positive x is "up". Sorry, I didn't rotate it or scale it better.

attachment.php?attachmentid=53906&d=1355474952.png

I am interested in the math involved to calculate the ideal natural teardrop shape for a hot air balloon. I want to learn the details of what is involved to calculate this accurately.

I read your reply which was a really nice start, but it unfortunately does not get into the details of how this is calculated and I really want to learn how this is done.

Regarding the pressure gradient within the balloon, I'm curious how to calculate the pressure change from the top to the bottom, and the math involved in calculating the shape.

I appreciate the help. Thank you.
 
Yachtsman said:
I am interested in the math involved to calculate the ideal natural teardrop shape for a hot air balloon. I want to learn the details of what is involved to calculate this accurately.

I read your reply which was a really nice start, but it unfortunately does not get into the details of how this is calculated and I really want to learn how this is done.

Regarding the pressure gradient within the balloon, I'm curious how to calculate the pressure change from the top to the bottom, and the math involved in calculating the shape.

I appreciate the help. Thank you.

Ya, I also interested in the equation for the shape of balloon, pressure, height, temperature and gas density (AIR). If can involve in Vector is better. But so far what I found is just a simple equation, the ideal gas law related it.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top