coki2000
- 91
- 0
The proof of derivative of lnx??
Hi all,
In proof of derivative of lnx,
\frac{d}{dx}(lnx)=\lim_{\Delta x\rightarrow 0}\frac{\ln(x+\Delta x)-lnx }{\Delta x}= \lim_{\Delta x\rightarrow 0}\frac{1}{\Delta x}\ln(1+\frac{\Delta x}{x})=\lim_{\Delta x\rightarrow 0}\frac{x}{\Delta x}\frac{1}{x}\ln(1+\frac{\Delta x}{x})=\lim_{\Delta x\rightarrow 0}\frac{1}{x}ln(1+\frac{\Delta x}{x})^{(\frac{x}{\Delta x})}
For \frac{x}{\Delta x}=n
\lim_{\Delta x\rightarrow 0}ln(1+\frac{\Delta x}{x})^{(\frac{x}{\Delta x})}\Rightarrow \lim_{n\rightarrow\infty}\ln (1+\frac{1}{n})^{n}
So
(lnx)'=\frac{1}{x}ln(\lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n})=\frac{1}{x}
so we take the \lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n}=e
But in proof of \lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n} we take the derivative of lnx is \frac{1}{x}
(https://www.physicsforums.com/showthread.php?t=348071)
Please explain to me this contradiction.
Thanks.
Hi all,
In proof of derivative of lnx,
\frac{d}{dx}(lnx)=\lim_{\Delta x\rightarrow 0}\frac{\ln(x+\Delta x)-lnx }{\Delta x}= \lim_{\Delta x\rightarrow 0}\frac{1}{\Delta x}\ln(1+\frac{\Delta x}{x})=\lim_{\Delta x\rightarrow 0}\frac{x}{\Delta x}\frac{1}{x}\ln(1+\frac{\Delta x}{x})=\lim_{\Delta x\rightarrow 0}\frac{1}{x}ln(1+\frac{\Delta x}{x})^{(\frac{x}{\Delta x})}
For \frac{x}{\Delta x}=n
\lim_{\Delta x\rightarrow 0}ln(1+\frac{\Delta x}{x})^{(\frac{x}{\Delta x})}\Rightarrow \lim_{n\rightarrow\infty}\ln (1+\frac{1}{n})^{n}
So
(lnx)'=\frac{1}{x}ln(\lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n})=\frac{1}{x}
so we take the \lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n}=e
But in proof of \lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n} we take the derivative of lnx is \frac{1}{x}
(https://www.physicsforums.com/showthread.php?t=348071)
Please explain to me this contradiction.
Thanks.
Last edited: