Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Why isn't temperature a vector quantity?

  1. Aug 22, 2011 #1
    why isn't temperature a vector quantity?
     
  2. jcsd
  3. Aug 23, 2011 #2

    Pengwuino

    User Avatar
    Gold Member

    Re: vectors

    Why should it be?
     
  4. Aug 23, 2011 #3

    I like Serena

    User Avatar
    Homework Helper

    Re: vectors

    You might consider putting temperature in a vector to represent for instance what the temperature is at different locations in a pipe.
    That's what you would do if you want to calculate the gradient of the temperature in the pipe.

    I'm not sure if that's what you mean though.
     
  5. Aug 23, 2011 #4
    Re: vectors

    Temperature doesn't have a direction does it?
     
  6. Aug 23, 2011 #5
    Re: vectors

    Vectors have components while temperature can't be represented by components.
     
  7. Aug 23, 2011 #6

    I like Serena

    User Avatar
    Homework Helper

    Re: vectors

    Not a spatial direction, but in the vector I described it has an other type of generalized direction.
     
  8. Aug 23, 2011 #7

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    Re: vectors

    But that is no different than having a potential field. It still doesn't turn it into a vector. What you are describing isn't a temperature vector, but rather a position vector.

    Zz.
     
  9. Aug 23, 2011 #8

    I like Serena

    User Avatar
    Homework Helper

    Re: vectors

    Yes, it's a potential field.
    But I think we're splitting words here.
    Note that the word "vector" has many meanings.
    Certainly temperature itself is not a vector, but you can have a vector, or perhaps I should call it a matrix, of temperature values.
    Certainly this is not a position vector, although each entry in the matrix corresponds to a position vector in my example.
     
  10. Aug 23, 2011 #9

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Re: vectors

    I think that we're drifting a little here.

    It is clear that the OP didn't mean a discretised potential field. Temperature is a scalar field and like any scalar field can be discretised if we so wish, but that doesn't mean we would refer to it as a vector.
     
  11. Aug 23, 2011 #10
    Re: vectors

    This is actually a deeper question than first appears. Temperature can be a vector. Temperature is a measure of the average kinetic energy of an ensemble of particles. If we were to get the particles to behave slower in one dimension on average than in the other dimension, then we would need separate temperatures to describe the distributions in the different directions. This is exactly what happens in quantum nanostructures. For instance, in a quantum well state, electrons will have a zero axial temperature Tz and non-zero transverse temperature Txy. In fact, there are separate states in the quantum well, each with its own electron temperature. Conventionally, the different temperature components are just treated separately and not formed into vector mathematics, but there is no reason why they cannot be.
     
  12. Aug 23, 2011 #11
    Re: vectors

    bcoz i need a direction to specify it's magnitude

    according to me it should have,rest of the world goes against me

    i think the temperature is taken to be constant because what they call as temperature is the average k.E energy of the system,which neglects the random behavior of particles
    that is why the temperature of room seems to be constant over it's domain,but it may vary outside that
     
  13. Aug 23, 2011 #12

    Dale

    Staff: Mentor

    Re: vectors

    So according to you, if I am facing due north at the equator, should 300 K be towards the left or towards the right of 100 K, and why?
     
  14. Aug 23, 2011 #13
    Re: vectors

    the same discrete divisions can be done with vectors,say a velocity can be superposition of many
    so what makes them a vector?
     
  15. Aug 23, 2011 #14

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Re: vectors

    Well, an array. But an array is not either a "vector" or a "matrix" unless it has algebraic properties. Does it make sense to add your "vector" or "matrix" of temperatures to another? What about multiplication of your "matrices"?
     
  16. Aug 23, 2011 #15

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Re: vectors

    Vectors obey a specific set of rules, as do Matrices. They have to have certain properties, otherwise they are simply arrays, as HOI says.
     
  17. Aug 23, 2011 #16

    Dale

    Staff: Mentor

    Re: vectors

    The primary thing that makes something a vector is that they must be elements of a vector space. Vector spaces have two operations, the addition of two vectors and the multiplication of a vector by a scalar, and those two operations have to satisfy several axioms:

    http://en.wikipedia.org/wiki/Vector_space#Definition

    Note that advanced physics, like general relativity, makes heavy use of tensors and Riemannian geometry where vectors are defined a little differently, but I think the above link is probably more relevant for your current questions.
     
  18. Aug 23, 2011 #17

    I like Serena

    User Avatar
    Homework Helper

    Re: vectors

    Errr.... yes it makes sense to add or multiply these vectors, or as you may call them, arrays.
    Think averages, variances, physical attributes with which you may want to multiply entry by entry, convolutions, ...
     
  19. Aug 23, 2011 #18

    Dale

    Staff: Mentor

    Re: vectors

    More importantly, for every element of a vector space there is an additive inverse which is also an element of the vector space. In most systems a temperature of 300 K makes sense, but a temperature of -300 K does not. So for most systems temperatures wouldn't be elements of a vector space.

    I am also not certain that addition of temperature makes sense physically. I mean, if you add a system of 300 K to a system of 400 K you don't usually get a system of 700 K. Contrast this to momentum where if you add a system of 300 kg m/s to a system of 400 kg m/s you do get a system of 700 kg m/s.
     
  20. Aug 23, 2011 #19

    I like Serena

    User Avatar
    Homework Helper

    Re: vectors

    The operations are well defined mathematically.
    Left on their own they may make no physical sense, but as an intermediate step to a result, they do make sense.

    So you add 2 temperature vectors. The result makes no physical sense.
    Then you divide it by 2.
    There! You have the average of the temperatures, which does make physical sense.

    Same thing for calculating a variance, where you would add the additive inverse of the vector to the vector with the mean temperatures.
    Next you would multiply the vector with itself to find the vector with squared errors.
     
  21. Aug 23, 2011 #20

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Re: vectors

    If the defining operations of a vector space do not make physical sense, then you have to question the usefulness of defining a "temperature vector". I was with you with the discretisation, but calling something a vector for the sake of it isn't useful.

    There are occasions where defining temperature vectors are useful, but not in the sense you propose. For example, suppose we are looking at heat condition in a simple 2D - biatomic lattice. Then we could define a vector [itex]\boldsymbol{\theta} = [\theta_1,\theta_2]^\text{T}[/itex], where [itex]\theta_i[/itex] is the temperature of the [itex]i^\text{th}[/itex] lattice node in the elementary cell. One could then define the heat flux as a matrix product [itex]A\boldsymbol{\theta}[/itex] where the matrix [itex]A[/itex] described the heat conduction through the lattice links. Such an application could then make use of the properties of vector spaces and matrix algebra to simplify the problem and express the heat condition problem in the whole lattice in terms of matrix products.

    In other words, defining the discretised temperature (or other scalar) field as a vector is useful for quantifying the relationship (or flow of the field) between different points or mesh vertices. So, although adding the temperature at two different points doesn't make sense, summing the flux from neighbouring points does.

    As I said earlier, I fear that we are veering wildly off course here and away from the OP's intended question.
     
    Last edited: Aug 23, 2011
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Why isn't temperature a vector quantity?
Loading...