Why no general solution to quintic equations?

Superhoben
Messages
6
Reaction score
1
It seems odd to me that we have no general solution to quintic equations yet.
Is it possible that it exist any general solutions to equations of the fifth degree (and higher) that just haven't been discovered yet?
Or are we certain that it doesn't exist?
 
Physics news on Phys.org
It is in fact a theorem that no solution exists that only uses functions that we would consider typical.

http://en.wikipedia.org/wiki/Abel–Ruffini_theorem

The theorem says that you cannot solve the general fifth degree polynomial using only basic arithmetic operations and calculating nth roots of numbers. It might be that there are other functions which you can allow yourself to use to solve higher degree polynomials (a trivial example is that if you define a function P(a,b,c,d,e) to return a root for a polynomial whose coefficients are a,b,c,d and e then you have "solved" the polynomial).
 
  • Like
Likes 1 person
Thanks. I don't understand why it don't exist yet and I don't understand the proof completely. Just out of curiosity, how much math do you need to read to understand the proof?
 
Superhoben said:
Thanks. I don't understand why it don't exist yet
It exists yet: The roots of the quintic equation can be analytically expressed thanks to the Jacobi theta functions, but not with a finie number of elementary functions.
 
Superhoben said:
Thanks. I don't understand why it don't exist yet and I don't understand the proof completely. Just out of curiosity, how much math do you need to read to understand the proof?
A fairly large portion of a typical undergraduate course in abstract algebra. For example, the proof using Galois theory is given in the final chapter (33) of Pinter's A Book of Abstract Algebra, and it depends to some degree on almost all of the first 32 chapters.

There are more direct proofs that do not use Galois theory - indeed, Abel's original proof predated Galois theory. Here is a video which sketches one such proof:

 
Last edited by a moderator:
  • Like
Likes 1 person
There's all sorts of unsolved and insoluble problems in mathematics. It's not like walking into a restaurant and ordering a meal.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top